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Nonparametric Iterative Machine Teaching
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What is Machine Teaching?

Machine teaching (MT) [17, 18] is the study of how to design the optimal teaching
set, typically with minimal examples, so that learners can quickly learn target mod-
els based on these examples.

It canbeconsideredasan inverseproblemofmachine learning, wheremachine learning
aims to learnmodel parameters fromadataset, whileMTaims tofindaminimal dataset
from the target model parameters.
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What is machine teaching
An inverse problem to machine learning;

The problem of finding an optimal training set given a machine learning algorithm and a 
target model;

It may be said that whenever one is optimizing data it is machine teaching; while if one is 
optimizing a model it is machine learning.

——Xiaojin Zhu
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What does “Iterative” mean?

Considering the interaction manner between teachers and learners, MT can be con-
ducted in either
• batch fashion [17, 9, 4, 10] where the teacher is allowed to interact with the
learner once, or

• iterative fashion [6, 7, 8] where an iterative teacher would feed examples
sequentially based on current status of the iterative learner.
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“Parametric” VS. “Nonparametric”

Parametric Teaching [6, 7, 14, 13] assumes that f can be represented by a set of pa-
rametersw, e.g., f(x) = ⟨w,x⟩ with input x1. Nonparametric Iterative Machine Teaching
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Figure 1. Comparison between parametric and nonparametric IMT
in 3D space. (a): Parameters are precisely vectors represented by
a point in 3D space, which would be updated gradually towards
w∗. (b): Nonparametric model f can be denoted by a surface in
3D, which would evolve in more complicated fashion.

to a nonparametric target function f∗. Figure 1 provides an
intuitive comparison between parametric and nonparametric
iterative teaching in a 3-dimensional space.

Shifting our focus to functions, we formulate NIMT as
an instance of functional optimization problem (Singer,
1974; Zoppoli et al., 2002; Mroueh et al., 2019; Shen et al.,
2020), and then derive two algorithms (one picks exam-
ples randomly, and the other picks examples in an greedy
fashion). Without loss of generality, we are mainly con-
cerned with the Reproducing Kernel Hilbert Space (RKHS)
in this paper. We start with a simple baseline algorithm,
called Random Functional Teaching (RFT), which essen-
tially adopts uniform sampling and serves as a functional
analogue of stochastic gradient descent (Ruder, 2016; Hardt
et al., 2016). In the context of IMT, we analyze the func-
tional gradient descent method (Mason et al., 1999a; Shen
et al., 2020) in RKHS, and then find that based on the chain
rule for functional gradients (Gelfand et al., 2000; Cole-
man, 2012), the gradient in NIMT can be expressed by the
multiplication of a scalar governing the magnitude and the
kernel function with the teaching example as its argument.
Therefore, steepening gradients is equivalent to maximizing
that scalar, which naturally leads to our greedy algorithm
– Greedy FT (GFT). GFT picks examples evaluated at the
point where the target and current models reach their maxi-
mal difference (Arbel et al., 2019; Cormen et al., 2022). Fur-
thermore, under mild assumptions, we theoretically prove
the convergence of both RFT and GFT, and then show that
the ITD of GFT is lower than that of RFT. This concludes
that GFT yields a tighter upper bound for ITD. Finally,
we validate our theoretical findings with a number of ex-
periments in both synthetic and real-world datasets under
nonparametric scenarios. To summarize, the contributions
of our work are listed as follows.

• To our knowledge, we are the first to comprehensively
study Nonparametric Iterative Machine Teaching (NIMT),
which focuses on exploring iterative algorithms for teach-

ing parameter-free target models from the optimization
perspective. Instead of operating in the finite-dimensional
space of parameters, we formulate NIMT as a functional
optimization in the space of infinite-dimensional func-
tions, a more general space of models (i.e., RKHS is
considered), in Section 4.1. NIMT is a natural generation
of IMT (Liu et al., 2017), shifting the parametric paradigm
to a nonparametric one.

• We propose two teaching algorithms (RFT and GFT). RFT
is based on random sampling with ground truth labels, and
the derivation of GFT is based on the maximization of
the informative scalar introduced in Proposition 5 in or-
der to steepen gradients. These two teaching algorithms
proposed in Section 4.2 fill the gap for teaching nonpara-
metric learners in IMT.

• We theoretically analyze the asymptotic behavior of both
RFT and GFT in Section 4.3. We prove that per-iteration
reduction of loss L for RFT and GFT has a negative upper
bound expressed by the discrepancy of iterative teaching
defined in Definition 10, and we derive that the ITD of
GFT is O(ψ( 2L(f0)

η̃ϵ )) (detailed notations are introduced
in the subsequent sections), which is shown to be lower
than the ITD of RFT, O(2L(f0)/ (η̃ϵ)).

2. Related Work
Machine teaching. There has been a recent growth of in-
terest in the research of machine teaching (Zhu, 2015; Zhu
et al., 2018; Liu et al., 2017; 2018; Wang et al., 2021). Batch
machine teaching studies behaviors of version space learn-
ers (Chen et al., 2018; Tabibian et al., 2019), linear learners
(Liu et al., 2016), reinforcement learners (Kamalaruban
et al., 2019; Zhang et al., 2020b) along with forgetful learn-
ers (Hunziker et al., 2018; Liu et al., 2018) and multiple
learners (Zhu et al., 2017). Further, taking the learner’s
optimization algorithm into consideration, iterative teaching
has been recently studied (Liu et al., 2017; 2018; Peltola
et al., 2019; Lessard et al., 2019; Liu et al., 2021; Xu et al.,
2021; Qiu et al., 2022). (Liu et al., 2021) considers a label
synthesis teacher and (Qiu et al., 2022) proposes a genera-
tive teacher. (Xu et al., 2021) improves the scalability and
efficiency of the iterative teaching algorithm with locality-
sensitive sampling. Different from existing works that focus
on parametric learners, we aim to teach a nonparametric
learner. In this regime, One of the most related work is
(Mansouri et al., 2019) which analyzes sequential teaching
from the perspective of hypothesis pruning without spec-
ifying a parameter for hypothesis. In contrast, this work
systematically investigates nonparametric teaching from the
optimization perspective. Besides, (Kumar et al., 2021;
Qian et al., 2022) are also highly related, since they study
non-gradient-based kernel learners under the batch setting.
However, they are not strictly nonparametric teaching since

2

Parametric assumption results in difficulty when the target models are defined to be
functionswithout dependency on parameters (viz. non-closed-form functions). Such
a limitation is addressedbyNonparametric Teaching [15, 16], which generalizesmodel
space from a finite dimensional one to an infinite dimensional one.

1The loss L can be general for different tasks, e.g., square loss for regression and hinge loss for classification.
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Implicit Neural Teaching (INT)
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Implicit Neural Representations

Implicit neural representation (INR) [11, 12] focuses onmodeling a given signal, which is
often discrete, through the use of an overparameterized multilayer perceptron (MLP)
such that the signal is accurately fitted by this MLP preserving great details.

Such an overparameterized MLP inputs low-dimensional coordinates of the given sig-
nal and outputs corresponding values for each input location, e.g., the MLP maps 2D
input coordinates to their respective 8-bit levels for a grayscale image.

2D Coordinates Gray Scale
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Motivation

The motivation comes from two folds:
• Lower the training cost and enhance the training efficiency of INR, which is
urgently needed when dealing with high-definition signals. For instance,
consider the case of a 2D grayscale image with a resolution of 1024× 1024,
which leads to a training set comprising 106 pixels

• Expand the applicability of nonparametric teaching towards deep learning.
“Nonparametric” is a quite abstract concept, which may be of interest for
theoretical analysis but less practical.
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Cont.

† If we can connect nonparametric teaching to MLP training, both problems
including training efficiency and applicability are addressed.

† Unfortunately, the evolution of an MLP is typically achieved by gradient descent
on its parameters, whereas nonparametric teaching involves functional
gradient descent as the means of function evolution.

Nonparametic Teaching

2D Coordinates Gray Scale

Bridging this (theoretical + practical) gap is of great value and calls for more exami-
nation prior to the application of nonparametric teaching algorithms in the context
of INR. Can we do that?
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Nonparametic Teaching
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Neural Tangent Kernel
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Neural Tangent Kernel

Neural Tangent Kernel [3, 5, 1, 2] is a symmetric and positive definite kernel function,
which is derived from the analysis of the evolution of a neural network (the MLP is
considered).

Kθt (xi, ·) =
〈
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Intuitive Illustration of INT Workflow
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By comparing the disparity be-
tween the given signal and the
current MLP output (a), the non-
parametric teacher (b) selectively
chooses examples (pixels) of the
greatest disparity (red boxes), in-
stead of a raster scan, to feed
to the MLP learner (c) who un-
dergoes learning (i.e., training) (d)
and outputs the final (e).
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Experiments and Results

We conduct extensive experiments to validate the effectiveness of INT.
• Toy 2D Cameraman fitting.

Figure: Progression of INT selected pixels (marked as black) at corresponding iterations when training
with INT 20% (top) and 40% (bottom).
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Cont.

(a) GT (b) w/o INT (c) w/o INT (20%) (d) With INT (20%) (e) With INT (incre.)

PSNR (dB) 26.78SSIM 0.7234 26.78 0.7236 28.86 0.7364 28.73 0.7756

Figure: Reconstruction quality of SIREN. (b) trains SIREN without (w/o) INT using all pixels. (c) trains it w/o
INT using 20% randomly selected pixels. (d) trains it using INT of 20% selection rate. (e) trains it using
progressive INT (i.e., increasing selection rate progressively from 20% to 100%).
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Cont.

• INT on multiple real-world modalities.

INT Modality Time (s) PSNR(dB) / IoU(%) ↑

7

Audio 23.05 48.38±3.50
Image 345.22 36.09±2.51

Megapixel 16.78K 31.82
3D Shape 144.58 97.07±0.84

✓

Audio 15.76 (-31.63%) 48.15±3.39
Image 211.04 (-38.88%) 36.97±3.59

Megapixel 11.87K (-29.26%) 33.01
3D Shape 93.19 (-35.54%) 96.68±0.83

Table: Signal fitting results for different data modalities. The encoding time is measured excluding data
I/O latency.
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Contribution Summary
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Contributions Summary

Main Contribution:
• We propose Implicit Neural Teaching (INT) that novelly interprets implicit neural
representation (INR) via the theoretical lens of nonparametric teaching, which
in turn enables the utilization of greedy algorithms from the latter to effectively
bolster the training efficiency of INRs.

• We unveil a strong link between the evolution of a multilayer perceptron (MLP)
using gradient descent on its parameters and that of a function using functional
gradient descent in nonparametric teaching. This connects nonparametric
teaching to MLP training, thus expanding the applicability of nonparametric
teaching towards deep learning.

• We showcase the effectiveness of INT through extensive experiments in INR
training across multiple modalities. Specifically, INT saves training time for 1D
audio (-31.63%), 2D images (-38.88%) and 3D shapes (-35.54%), while upkeeping its
reconstruction quality.
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Thank you for listening!
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