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Nonparametric Iterative Machine Teaching
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What is Machine Teaching? P IcML

Machine teaching (MT) [17, 18] is the study of how to design the
, typically with examples, so that learners can quickly learn
based on these examples.

It canbe considered as an of machine learning, where machine learning

aims to learn model parameters from a dataset, while MT aims to find a minimal dataset

from the target model parameters.
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What does “Iterative” mean? 9 ICML

ing

Considering the between teachers and learners, MT can be con-
ducted in either
® batch fashion [17, 9, 4, 10] where the teacher is allowed to interact with the
learner once, or
e iterative fashion [6, 7, 8] where an iterative teacher would feed examples
sequentially based on current status of the iterative learner.
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“Parametric” VS. “Nonparametric” )

Parametric Teaching [6, 7, 14, 13] assumes that f can be represented by a set of pa-
rameters w, e.g., f(x) = (w, z) with input .

(a) Parametric IMT (b) Nonparametric IMT

Parametric assumption results in difficulty when the target models are defined to be
functions without dependency on parameters (viz. non-closed-form functions). Such
alimitation is addressed by Nonparametric Teaching[15, 16], which generalizes model
space from a finite dimensional one to an infinite dimensional one.

The loss £ can be general for different tasks, e.g., square loss for regression and hinge loss for classification.
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Implicit Neural Teaching (INT)
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Implicit Neural Representations )

Implicit neural representation (INR) [11, 12] focuses on modeling a given signal, which is
often discrete, through the use of an overparameterized
such that the signal is accurately fitted by this MLP preserving great details.

Such an overparameterized MLP inputs of the given sig-
nal and outputs corresponding values for each input location, e.g., the MLP maps 2D
input coordinates to their respective 8-bit levels for a grayscale image.

2D Coordinates Gray Scale
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Motivation ‘@ ICML

The motivation comes from two folds:

¢ Lower the training cost and enhance the of INR, which is
urgently needed when dealing with . Foriinstance,
consider the case of a 2D grayscale image with a resolution of 1024 x 1024,
which leads to a training set comprising 10° pixels

® Expand the of towards deep learning.
“Nonparametric” is a quite concept, which may be of interest for
theoretical analysis but

9/22



Cont. 3

T If we can nonparametric teaching to MLP training, both problems
including training efficiency and applicability are addressed.
T Unfortunately, the evolution of an MLP is typically achieved by
, whereas nonparametric teaching involves
as the means of function evolution.

w % 2D Coordinates

Nonparametic Teaching

Gray Scale

Bridging this (theoretical + practlcal is of great value and calls for more exami-
nation prior to the application of in the context

of INR. Can we do that?
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Cont.

Neural Tangent Kernel
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Neural Tangent Kernel

Neural Tangent Kernel [3, 5, 1, 2] is a symmetric and positive definite kernel function,
which is derived from the analysis of the evolution of a neural network (the MLP is

considered).
Ofe
ot ) % wi79t> (1)

0
th (mz,) = < %

Pl 07o() 3f0C) | _ () AfeC) , ., ¥, 070(0) fel) | )

— L
NTK = [ Xizo Ep=0 75, 26,, 061y 2o, va = [ 9000 9600 0610 961,

12/22



Intuitive lllustration of INT Workflow >
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By comparing the disparity be-
tween the given signal and the
current MLP output (a), the non-
parametric teacher (b) selectively
chooses examples (pixels) of the
greatest disparity (red boxes), in-
stead of a raster scan, to feed
to the MLP learner (c) who un-
dergoes learning (i.e., training) (d)
and outputs the final (e).
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Experiments and Results r

We conduct extensive experiments to validate the effectiveness of INT.

¢ Toy 2D Cameraman fitting.

20%

40%

Figure: Progression of INT selected pixels (marked as black) at corresponding iterations when training
with INT 20% (top) and 40% (bottom).
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(a) GT (b) w/o INT (c) w/o INT (20%) (d) With INT (20%) (e) With INT (incre.)
PSNR (dB) SSIM  26.78 0.7234 26.78 0.7236 28.86 0.7364 28.73 0.7756

Figure: Reconstruction quality of SIREN. (b) trains SIREN without (w/0) INT using all pixels. (c) trains it w/o
INT using 20% randomly selected pixels. (d) trains it using INT of 20% selection rate. (e) trains it using
progressive INT (i.e., increasing selection rate progressively from 20% to 100%).
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Cont.

¢ INT on multiple real-world modalities.

INT | Modality |  Time (s) PSNR(dB) / loU(%) 1
Audio 23.05 48.38+3.50
X Image 345.22 36.09+2.51
Megapixel 16.78K 31.82
3D Shape 144,58 97.074+0.84
Audio 15.76 (-31.63%) 48.15+3.39
v Image 211.04 (-38.88%) 36.97+3.59
Megapixel | 11.87K (-29.26%) 33.01
3D Shape | 93.19 (-35.54%) 96.68+0.83

Table: Signal fitting results for different data modalities. The encoding time is measured excluding data

1/0 latency.
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Contribution Summary
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Contributions Summary ‘@ ICML

Main Contribution:
® Ve propose (INT) that novelly interprets
(INR) via the theoretical lens of , which
in turn enables the utilization of greedy algorithms from the latter to effectively
of INRs.

® Ve unveil a strong between the evolution of a (MLP)
using gradient descent on its parameters and that of a function using functional
gradient descent in . This connects nonparametric
teaching to MLP training, thus expanding the of nonparametric
teaching towards deep learning.

® We showcase the of INT through extensive experiments in INR
training across multiple modalities. Specifically, INT saves training time for 1D
audio (-31.63%), 2D images (-38.88%) and 3D shapes (-35.54%), while upkeeping its

reconstruction quality.
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Thank you for listening!
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