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Nonparametric Teaching

Nonparametric teaching (NT) (Zhang et al., 2023b;a) presents a theo-
retical framework to facilitate efficient example selection when the target
function is nonparametric, i.e., implicitly defined.

Specifically, machine teaching (Zhu, 2015; Liu et al., 2017; Zhu et al.,
2018) considers the design of a training set (dubbed the teaching set) for
the learner, with the goal of enabling speedy convergence towards target
functions.
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What is machine teaching
An inverse problem to machine learning;

The problem of finding an optimal training set given a machine learning algorithm and a 
target model;

It may be said that whenever one is optimizing data it is machine teaching; while if one is 
optimizing a model it is machine learning.

——Xiaojin Zhu
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NT (Zhang et al., 2023b;a) relaxes the assumption of target functions† f
being parametric (Liu et al., 2017; 2018), which is f can be represented
by a set of parameters w, e.g., f (x) = ⟨w,x⟩ with input x, to encompass
the teaching of nonparametric target functions.Nonparametric Iterative Machine Teaching
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Figure 1. Comparison between parametric and nonparametric IMT
in 3D space. (a): Parameters are precisely vectors represented by
a point in 3D space, which would be updated gradually towards
w∗. (b): Nonparametric model f can be denoted by a surface in
3D, which would evolve in more complicated fashion.

to a nonparametric target function f∗. Figure 1 provides an
intuitive comparison between parametric and nonparametric
iterative teaching in a 3-dimensional space.

Shifting our focus to functions, we formulate NIMT as
an instance of functional optimization problem (Singer,
1974; Zoppoli et al., 2002; Mroueh et al., 2019; Shen et al.,
2020), and then derive two algorithms (one picks exam-
ples randomly, and the other picks examples in an greedy
fashion). Without loss of generality, we are mainly con-
cerned with the Reproducing Kernel Hilbert Space (RKHS)
in this paper. We start with a simple baseline algorithm,
called Random Functional Teaching (RFT), which essen-
tially adopts uniform sampling and serves as a functional
analogue of stochastic gradient descent (Ruder, 2016; Hardt
et al., 2016). In the context of IMT, we analyze the func-
tional gradient descent method (Mason et al., 1999a; Shen
et al., 2020) in RKHS, and then find that based on the chain
rule for functional gradients (Gelfand et al., 2000; Cole-
man, 2012), the gradient in NIMT can be expressed by the
multiplication of a scalar governing the magnitude and the
kernel function with the teaching example as its argument.
Therefore, steepening gradients is equivalent to maximizing
that scalar, which naturally leads to our greedy algorithm
– Greedy FT (GFT). GFT picks examples evaluated at the
point where the target and current models reach their maxi-
mal difference (Arbel et al., 2019; Cormen et al., 2022). Fur-
thermore, under mild assumptions, we theoretically prove
the convergence of both RFT and GFT, and then show that
the ITD of GFT is lower than that of RFT. This concludes
that GFT yields a tighter upper bound for ITD. Finally,
we validate our theoretical findings with a number of ex-
periments in both synthetic and real-world datasets under
nonparametric scenarios. To summarize, the contributions
of our work are listed as follows.

• To our knowledge, we are the first to comprehensively
study Nonparametric Iterative Machine Teaching (NIMT),
which focuses on exploring iterative algorithms for teach-

ing parameter-free target models from the optimization
perspective. Instead of operating in the finite-dimensional
space of parameters, we formulate NIMT as a functional
optimization in the space of infinite-dimensional func-
tions, a more general space of models (i.e., RKHS is
considered), in Section 4.1. NIMT is a natural generation
of IMT (Liu et al., 2017), shifting the parametric paradigm
to a nonparametric one.

• We propose two teaching algorithms (RFT and GFT). RFT
is based on random sampling with ground truth labels, and
the derivation of GFT is based on the maximization of
the informative scalar introduced in Proposition 5 in or-
der to steepen gradients. These two teaching algorithms
proposed in Section 4.2 fill the gap for teaching nonpara-
metric learners in IMT.

• We theoretically analyze the asymptotic behavior of both
RFT and GFT in Section 4.3. We prove that per-iteration
reduction of loss L for RFT and GFT has a negative upper
bound expressed by the discrepancy of iterative teaching
defined in Definition 10, and we derive that the ITD of
GFT is O(ψ( 2L(f0)

η̃ϵ )) (detailed notations are introduced
in the subsequent sections), which is shown to be lower
than the ITD of RFT, O(2L(f0)/ (η̃ϵ)).

2. Related Work
Machine teaching. There has been a recent growth of in-
terest in the research of machine teaching (Zhu, 2015; Zhu
et al., 2018; Liu et al., 2017; 2018; Wang et al., 2021). Batch
machine teaching studies behaviors of version space learn-
ers (Chen et al., 2018; Tabibian et al., 2019), linear learners
(Liu et al., 2016), reinforcement learners (Kamalaruban
et al., 2019; Zhang et al., 2020b) along with forgetful learn-
ers (Hunziker et al., 2018; Liu et al., 2018) and multiple
learners (Zhu et al., 2017). Further, taking the learner’s
optimization algorithm into consideration, iterative teaching
has been recently studied (Liu et al., 2017; 2018; Peltola
et al., 2019; Lessard et al., 2019; Liu et al., 2021; Xu et al.,
2021; Qiu et al., 2022). (Liu et al., 2021) considers a label
synthesis teacher and (Qiu et al., 2022) proposes a genera-
tive teacher. (Xu et al., 2021) improves the scalability and
efficiency of the iterative teaching algorithm with locality-
sensitive sampling. Different from existing works that focus
on parametric learners, we aim to teach a nonparametric
learner. In this regime, One of the most related work is
(Mansouri et al., 2019) which analyzes sequential teaching
from the perspective of hypothesis pruning without spec-
ifying a parameter for hypothesis. In contrast, this work
systematically investigates nonparametric teaching from the
optimization perspective. Besides, (Kumar et al., 2021;
Qian et al., 2022) are also highly related, since they study
non-gradient-based kernel learners under the batch setting.
However, they are not strictly nonparametric teaching since
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†The loss L can be general for different tasks, e.g., square loss for regression and hinge
loss for classification.

Implicit Neural Representations

Implicit neural representation (INR) (Sitzmann et al., 2020b; Tancik et
al., 2020) focuses on modeling a given signal, which is often discrete,
through the use of an overparameterized multilayer perceptron (MLP)
such that the signal is accurately fitted by this MLP preserving great de-
tails.

Such an overparameterized MLP inputs low-dimensional coordinates of
the given signal and outputs corresponding values for each input loca-
tion, e.g., the MLP maps 2D input coordinates to their respective 8-bit
levels for a grayscale image.

2D Coordinates Gray Scale

The Bridge Between NT and INRs: Neural Tangent Kernel

The evolution of an MLP is typically achieved by gradient descent on its parame-
ters, whereas nonparametric teaching involves functional gradient descent as the
means of function evolution.

Bridging this (theoretical + practical) gap is of great value and calls for more
examination prior to the application of nonparametric teaching algorithms in the
context of INR.

Nonparametic Teaching

2D Coordinates Gray Scale

Neural Tangent Kernel

Neural Tangent Kernel (Jacot et al., 2018; Lee et al., 2019) is a symmetric and
positive definite kernel function, which is derived from the analysis of the evolution
of a neural network (the MLP is considered).

Kθt(xi, ·) =
〈
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Main Contribution

Our key contributions are:
▶ We propose Implicit Neural Teaching (INT) that novelly interprets implicit neural

representation (INR) via the theoretical lens of nonparametric teaching, which in
turn enables the utilization of greedy algorithms from the latter to effectively bolster
the training efficiency of INRs.

▶ We unveil a strong link between the evolution of a multilayer perceptron (MLP)
using gradient descent on its parameters and that of a function using functional
gradient descent in nonparametric teaching. This connects nonparametric teach-
ing to MLP training, thus expanding the applicability of nonparametric teaching
towards deep learning. We further show that the dynamic NTK, derived from gra-
dient descent on the parameters, converges to the canonical kernel of functional
gradient descent.

▶ We showcase the effectiveness of INT through extensive experiments in INR train-
ing across multiple modalities. Specifically, INT saves training time for 1D audio
(-31.63%), 2D images (-38.88%) and 3D shapes (-35.54%), while upkeeping its
reconstruction quality.

INT Workflow and Algorithm
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Figure 2. An illustration of the spectral understanding in
a 2D function coordinate system (i.e., RKHS) with the
{K(xi, ·)}2 basis. The basis can be non-orthogonal if
K(xi,xj) ̸= 0 for i ̸= j. The coordinate of fθt −
f∗ represents its projection on each axis, which is given by
⟨(fθt − f∗) , [K(xi, ·)]T2 ⟩H = [fθt(xi)− f∗(xi)]

T
2 , and that of

K(x†, ·) is ⟨K(x†, ·), [K(xi, ·)]T2 ⟩H = [K(x†,xi)]
T
2 , which is

stored in the †-th row of K. Assuming K̄ =

[
0.5 0.25
0.25 0.5

]
,

the eigenvalues and the respective eigenvectors can be com-
puted as λ1 = 0.75, λ2 = 0.25 and v1 = (
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)T , respectively. Assuming [fθt(xi)− f∗(xi)]2 equals

(1, 0.5), its first and second principal component projections are
3
√
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and −

√
2

4
, respectively. Moreover, the discrepancy between

fθt and f∗ diminishes at a rate of e−
3ηt
4 and e−

ηt
4 for the first

and second principal components, respectively.

Chen & Xu, 2020), we present the INT algorithm that also
aims to increase the steepness of gradients. Differently, INT
circumvents the potentially cumbersome computation of
∥K(xi, ·)∥H in ∥G∥H by utilizing a projection view. To be
specific, for i ∈ NN , ∂L

∂f |fθ,xi can be seen as the component
of ∂L

∂f |fθ projected onto the corresponding element of the
basis {K(xi, ·)}N . Hence, the gradient represents the total
sum of the updates, each weighted by ∂L

∂f |fθ,xi , throughout
{K(xi, ·)}k, which is associated with the selected exam-
ples (Wright, 2015). Consequently, steepening the gradi-
ent simply requires maximizing the coefficient ∂L

∂f |fθ,xi
,

bypassing the need to calculate ∥K(xi, ·)∥H. This indi-
cates that selecting examples that enlarge

∣∣∣∂L∂f |fθ,x
∣∣∣ or those

which correspond to larger components of ∂L
∂f |fθ can be

sufficient to increase the gradient, which means

{xi}k∗ = argmax
{xi}k⊆{xi}N

∥∥∥∥∥

[
∂L
∂f

∣∣∣∣
fθ,xi

]

k

∥∥∥∥∥
2

. (21)

From a functional perspective, when dealing with a convex
loss functional L, the norm of the partial derivative of L
with respect to f at fθ, denoted as ∥∂L∂f |fθ∥H, is positively
correlated with∥fθ − f∗∥H; as fθ gradually approaches f∗,
∥∂L∂f |fθ∥H decrease (Boyd et al., 2004; Coleman, 2012).
This relationship becomes particularly significant when
L is strongly convex with a larger strong convexity con-

Algorithm 1 Implicit Neural Teaching
Input: Target signal f∗, initial MLP fθ0 , the size of selected
training size k ≤ N , small constant ϵ > 0 and maximal
iteration number T .

Set fθt ← fθ0 , t = 0.

while t ≤ T and ∥[fθt(xi)− f∗(xi)]N∥2 ≥ ϵ do
The teacher selects k teaching examples:

/* Examples corresponding to the k
largest |fθt(xi)− f∗(xi)|. */

{xi}k∗ = argmax
{xi}k⊆{xi}N

∥[fθt(xi)− f∗(xi)]k∥2.

Provide {xi}k∗ to the MLP learner.

The learner updates fθt based on received {xi}k∗:

// Parameter-based gradient descent.
θt ← θt − η

k

∑
xi∈{xi}k

∗ ∇θL(fθt(xi), f
∗(xi)).

Set t← t+ 1.
end

stant (Kakade & Tewari, 2008; Arjevani et al., 2016). Based
on these findings, the INT algorithm selects examples by

{xi}k∗ = argmax
{xi}k⊆{xi}N

∥[fθ(xi)− f∗(xi)]k∥2 . (22)

Pseudo code is in Algorithm 1.

When considering the square loss commonly employed in
INR, the aforementioned correlation can be represented as
∥∂L∂f |fθ∥H ∝ ∥fθ − f∗∥H. Besides, it is intriguing that the
INT algorithm aligns with the applied variant of the greedy
functional teaching algorithm, wherein it is necessary for
∥K(xi, ·)∥H to be uniform or ∥K(xi, ·)∥H = 1 for all
xi (Zhang et al., 2023b). The convergence analysis of the
INT algorithm also aligns with that of the greedy functional
teaching algorithm obtained in Zhang et al., 2023b;a.

With the spectral analysis in Section 4.2, a deeper un-
derstanding of INT follows. First, we define the entire
space as the one spanned by the basis corresponding to the
whole training set {K(xi, ·)}N . Similarly, {K(xi, ·)}k ⊆
{K(xi, ·)}N spans subspaces associated with the selected
examples. The eigenvalue of the transformation from the
entire space to the subspace of concern (i.e., spanned by
{K(xi, ·)}k associated with selected examples) is one,
while it is zero for the subspace without interest (Watanabe
& Katagiri, 1995; Burgess & Van Veen, 1996). The spec-
tral understanding indicates that fθt approaches f∗ swiftly
at the early stage within the current subspace, owing to
the large eigenvalues (Jacot et al., 2018). Hence, the INT
algorithm can be interpreted as dynamically altering the
subspace of interest to fully exploit the period when fθt

approaches f∗ rapidly. Meanwhile, by selecting examples
based on Equation 22, the subspace of interest is precisely
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Experiments and Results

▶ Toy 2D Cameraman fitting.

Figure: Progression of INT selected pixels (marked as black) at corresponding iterations when training with INT 20%.

(a) GT (b) w/o INT (c) w/o INT (20%) (d) With INT (20%) (e) With INT (incre.)

PSNR (dB) 26.78SSIM 0.7234 26.78 0.7236 28.86 0.7364 28.73 0.7756

Figure: Reconstruction quality of SIREN. (b) trains SIREN without (w/o) INT using all pixels. (c) trains it w/o INT using
20% randomly selected pixels. (d) trains it using INT of 20% selection rate. (e) trains it using progressive INT (i.e.,
increasing selection rate progressively from 20% to 100%).

▶ INT on multiple real-world modalities.
The encoding time is measured excluding data I/O latency.
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Figure 6. Selecting ratio and interval of various INT algorithms.
(Left) Red - decremental; Blue - incremental; Yellow - Dense.
(Right) Red - R-Cosine; Blue - Cosine; Yellow - Incremental.

Ratio Interval Time (s) PSNR (dB)↑ SSIM↑
- - 345.22 35.95±1.89 0.935±0.03

Cosine Dense 337.00 36.39±2.40 0.941±0.02
Cosine Incremental 227.84 36.61±2.55 0.942±0.02

R-Cosine Dense 346.64 35.18±1.44 0.920±0.02
R-Cosine Decremental 225.30 33.56±2.53 0.894±0.03

Incremental Dense 468.01 36.84±2.70 0.946±0.02
Incremental Incremental 211.04 37.04±2.51 0.946±0.02

Table 1. Performance and training time for different INT strategies
on Kodak dataset. The first line (“-” in both Ratio and Interval)
corresponds to training without INT.

Company, 1999) shows that combining an incrementally
increasing sampling ratio with an incrementally increasing
sampling interval leads to the best performance in terms of
both training speed and construction quality. We also want
to highlight the severe degradation in reconstruction quality
that comes with training an INR via decremental sampling
ratio and intervals (comparing rows 4&5 in Table 1). We
attribute this to the nature of INRs to progressively learn sig-
nals of lower to higher frequencies as shown in (Rahaman
et al., 2019) while the decremental strategy goes against
it. Specifically, at the beginning of training, the MLP may
not be able to learn all the information provided by densely
sampled examples. But towards the end of training when
the MLP is trying to fit the remaining details of the signal,
the decremental INT algorithm provides sparser and sparser
samples that do not get updated frequently. This serves as a
counter-example that explains the effectiveness of utilizing
incremental INT for training general INRs, as we shall see
in the following section.

INT on multiple real-world modalities. To demonstrate
the practicality of INT in real-world applications, we con-
duct experiments on signal fitting tasks across datasets of
various modalities, including 1D audio (Librispeech (Panay-
otov et al., 2015)), 2D images (Kodak (Eastman Kodak
Company, 1999)), megapixel images (Pluto (NASA, 2018)),
and 3D shapes (Stanford 3D Scanning Repository (Stanford
Computer Graphics Laboratory, 2007)). We selected the
optimal strategy from Table 1 (i.e. step-wise increments of
both sampling ratio and intervals) as the default INT set-
ting and evaluated it against the baseline without INT. The
implementation details of the experiment for each modal-

INT Modality Time (s) PSNR(dB) / IoU(%) ↑

✗

Audio 23.05 48.38±3.50
Image 345.22 36.09±2.51

Megapixel 16.78K 31.82
3D Shape 144.58 97.07±0.84

✓
Audio 15.76 (-31.63%) 48.15±3.39
Image 211.04 (-38.88%) 36.97±3.59

Megapixel 11.87K (-29.26%) 33.01
3D Shape 93.19 (-35.54%) 96.68±0.83

Table 2. Signal fitting results for different data modalities. The
encoding time is measured excluding data I/O latency.

ity can be found in Appendix C. As shown in Table 2, it
is evident that INT can effectively speed up encoding for
all modalities, ranging from 1.41× to 1.64×, with mini-
mal degradation in performance (< 1dB PSNR or < 1%
IoU). In the case of 2D images, the PSNR with INT even
improves from 36.09dB to 36.97dB with near 40% decrease
in training time. We also highlight the results for fitting
3D shapes and megapixel Pluto image (8192×8192), which
instead requires mini-batch INT (Zhang et al., 2023a) due
to hardware constraints. That is, for each iteration of opti-
mization, we randomly sample a subset of points from the
training set and run the INT algorithm to train our model.
We make sure that all pixels in the image are sampled for
each epoch. This serves as an analogous training proce-
dure to combining stochastic gradient descent with INT and
presents the robustness of our INT algorithms in improving
training efficiencies.

6. Concluding Remarks and Future Work
This paper has proposed Implicit Neural Teaching (INT),
a novel paradigm that enhances the learning efficiency of
implicit neural representation (INR) through nonparametric
machine teaching. Using an overparameterized multilayer
perceptron (MLP) to fit a given signal, INT reduces the wall-
clock time for learning INR by over 30% as demonstrated
by extensive experiments. Moreover, INT establishes a
theoretically rich connection between the evolution of an
MLP using parameter-based gradient descent and that of a
function using functional gradient descent in nonparametric
teaching. This bridge between nonparametric teaching and
MLP training readily expands the applicability of nonpara-
metric teaching in the realm of deep learning.

Moving forward, it could be intriguing to explore other prac-
tical utilities related to INT. This will involve developing a
deeper theoretical understanding of INT, with the neural tan-
gent kernel playing a crucial role. Additionally, exploring
more efficient example selection algorithms tailored to spe-
cific tasks, such as fine-tuning and prompt training in large
language models, holds promise for future advancements.
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