Nonparametric Teaching The Bridge Between NT and INRs: Neural Tangent Kernel

Nonparametric teaching (NT) (Zhang et al., 2023b;a) presents a theo- The evolution of an MLP is typically achieved by gradient descent on its parame- Lisos Algorithm 1 Implicit Neural Teaching
retical framework to facilitate efficient example selection when the target fers, whereas nonparametric teaching involves functional gradient descent as the Input: Target signal f*, initial MLP fyo, the size of selected
function is nonparametric, i.e., implicitly defined. means of function evolution. i training size k < N, small constant ¢ > 0 and maximal
1teration number 1.
Specifically, machine teaching (Zhu, 2015; Liu et al., 2017; Zhu et al., Bridging this (theoretical + practical) gap is of great value and calls for more ¥ &l Nonparametric Teacher
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2018) considers the design of a training set (dubbed the teaching set) for examination prior to the application of nonparametric teaching algorithms in the . N T . *
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Neural Tangent Kernel (Jacot et al., 2018; Lee et al., 2019) is a symmetric and

NT (Zhang et al., 2023b;a) relaxes the assumption of target functions' f positive definite kernel function, which is derived from the analysis of the evolution Learn
being parametric (Liu et al., 2017; 2018), which is f can be represented of a neural network (the MLP is considered).

by a set of parameters w, e.g., f(x) = (w, x) with input x, to encompass
the teaching of nonparametric target functions.
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Experiments and Results
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e loss L can be general for different tasks, e.g., square loss for regression and hinge . . . L . L .
. 9 954 J ) el 9fe0) 35at) D00 B el . - . Figure: Progression of INT selected pixels (marked as black) at corresponding iterations when training with INT 20%.
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(a) Parametric IMT (b) Nonparametric IMT

(a) GT (b) w/o INT (c) w/o INT (20%) (d) With INT (20%) (e) With INT (incre.)
SSIM  26.78 0.7234 26.78 0.7236 28.86 0.7364 28.73 0.7756

Implicit Neural Representations
Implicit neural representation (INR) (Sitzmann et al., 2020b; Tancik et Our key contributions are: CE CE A N A
al., 2020) focuses on modeling a given signal, which is often discrete, » We propose Implicit Neural Teaching (INT) that novelly interprets implicit neural Figure: Reconstruction quality of SIREN. (b) trains SIREN without (w/0) INT using all pixels. (c) trains it w/o INT using
through the use of an overparameterized multilayer perceptron (MLP) representation (INR) via the theoretical lens of nonparametric teaching, which in 20% randomly selected pixels. (d) trains it using INT of 20% selection rate. (e) trains it using progressive INT (i.e.,
such that the signal is accurately fitted by this MLP preserving great de- turn enables the utilization of greedy algorithms from the latter to effectively bolster increasing selection rate progressively from 20% to 100%).
tails. the training efficiency of INRs. | | > INT on multiple real-world modalities.
Such an overparameterized MLP inputs low-dimensional coordinates of > We unvell a strong link between the evolution of a multilayer perceptron (MLP) The encoding time is measured excluding data 1/O latency.
the given signal and outputs corresponding values for each input loca- using gradient de.scent on its pa.rameter.s and t_hat of a function using fgnctlonal . .
tion, e.g., the MLP maps 2D input coordinates to their respective 8-bit gradient descent in nonparametric teaching. This connects nonparametric teach- INT | Modality Time (s) PSNR(dB) / IoU(%) T
levels for a grayscale image. ing to MLP training, thus expanding the applicability of nonparametric teaching Audio 23 05 48 3813 50
towards deep learning. We further show that the dynamic NTK, derived from gra- Image 345.22 36.0942.51
dient descent on the parameters, converges to the canonical kernel of functional X Megapixel 16.78K 31.82
gradient descent. 3D Shape 144.58 97.07+0.84
2D Coordinates Gray Scale » We showcase the efiectiveness of INT through extensive experiments in INR train- Audio 15.76 (-31.63%) 48 1543 .39
ing across multiple modalities. Specifically, INT saves training time for 1D audio Image 211.04 (-38.88%) 36.97-+3.59
(-31.63%), 2D images (-38.88%) and 3D shapes (-35.54%), while upkeeping its v Megapixel | 11.87K (-29.26%) 33.01
reconstruction quality. 3D Shape | 93.19 (-35.54%) 96.68+0.83




