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Machine Teaching

Machine teaching (MT) considers the problem of how to design the most
effective teaching set, typically with the smallest amount of (teaching)
examples possible, to facilitate rapid learning of the target models by
learners based on these examples.

It can be thought of as an inverse of machine learning, in the sense that
the learner is to learn models on a given dataset, while the teacher is to
seek a (minimal) dataset from a target model.

Depending on how teachers and learners interact with each other, MT
can be carried out in either
▶ batch fashion which focuses on single-round interaction, that is, the most

representative and effective teaching dataset are designed to be fed to
the learner in one shot, or

▶ iterative fashion where an iterative teacher would feed examples based
on learners’ status (current learnt models) round by round, such that the
learner can converge to a target model within fewer rounds.
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Figure: Comparison between the
single-learner teaching and MINT.

Previous nonparametric teaching algo-
rithms merely focus on the single-learner
setting (i.e., teaching a scalar-valued tar-
get model or function to a single learner).
To empower them to fulfill the practi-
cal needs of complex tasks, we intro-
duce a more comprehensive task called
Multi-learner Nonparametric Teaching
(MINT). In MINT, the teacher aims to
instruct multiple learners, with each
learner focusing on learning a scalar-
valued target model.
Main Contribution:
▶ By analyzing general vector-valued RKHS, we study the multi-learner

nonparametric teaching (MINT), where the teacher selects examples
based on a vector-valued target function (each component of it is a
scalar-valued one for a single learner) such that multiple learners can
learn its components simultaneously in a fast speed.

▶ By enabling the communication among multiple learners, learners can
update themselves with a linear combination of current learnt functions
of all learners. We study a communicated MINT where the teacher not
only selects examples but also injects the guidance of communication.

▶ Under mild assumptions, we characterize the efficiency of our multi-
learner generalization of nonparametric teaching. More importantly, we
also empirically demonstrate its efficiency.

Teaching Settings

Vector-valued Functional Optimization: We define multi-learner noparametric teaching as a vector-
valued functional minimization over the collection of potential teaching sequences D in the vector-
valued reproducing kernel Hilbert space:

D∗ = argmin
D∈Dd

M(f̂ ∗,f ∗) + λ · len(D) s.t. f̂ ∗ = A(D) (1)

whereM denotes a discrepancy measure, len(D), which is regularized by a constant λ, is the length
of the teaching sequence D, and A represents the learning algorithm of learners. Specifically, A is
taken as f̂ ∗ = argmin

f∈Hd

E(x,y) [L(f (x),y)], where (x,y) ∈ X d×Yd and (x,y) ∼ [Qi(xi, yi)]
d. Evaluated at

an example vector (x,y) = [(xi,ji, yi,ji)]
d with the example index ji ∈ Nk, the multi-learner convex loss

L therein is L(f (x),y) =∑d
i=1Li(fi(xi,ji), yi,ji) = Ex

[
[Li(fi, yi,ji)]

d
]
, where Li is the convex loss for i-th

learner.

Vanilla Multi-learner Teaching

Lemma 1 (Sufficient Descent for multi-learner RFT). Suppose there are d learners, and the example
mean for each learner is µi = Exi∼Pi(xi)(xi) <∞, and the variance σ2

i = Exi∼Pi(xi)(xi − µi)
2 <∞, i ∈ Nd.

Under the Lipschitz smooth and bounded kernel assumptions, if ηti ≤ 1
2LL·MK

for all i ∈ Nd, then RFT
teachers can, on average, reduce the multi-learner loss L(f ) by:

Ex∼[Pi(xi)]d
[
L(f t+1)− L(f t)

]
≤ −η̃

t

2

d∑

i=1

(mi,t(µi) +
m′′i,t(µi)

2
σ2
i ), (2)

where η̃t = mini∈Nd
ηti and mi,t(ẋ) := Eẋ[(∇fLi(f )|f=f t

i
)2].

Theorem 2 (Convergence for multi-learner RFT). Suppose the vector-valued model for multiple learn-
ers is initialized with f 0 ∈ Hd and returns f t ∈ Hd after t iterations, we have the upper bound of
mini∈Nd

(
mi,t(µi) +m′′i,t(µi)σ

2
i/2
)

w.r.t. t:

min
i∈Nd

(
mi,t−1(µi) +m′′i,t−1(µi)σ

2
i/2
)
≤ 2Ex∼[Pi(xi)]d

[
L(f 0)

]
/(dη̇t), (3)

where 0 < η̇ = min
l∈{0}⋃Nt−1

η̃l ≤ 1/(2LL·MK), and given a small constant ϵ > 0 it would take approximately

O(2Ex∼[Pi(xi)]d
[
L
(
f 0)
]
/(dη̇ϵ)

)
iterations to reach a stationary point.

Lemma 3 (Sufficient Descent for multi-learner GFT). Under the same assumption, if ηti ≤ 1
2LL·MK

for
all i ∈ Nd, the GFT teachers can achieve a greater reduction in the multi-learner loss L:

Ex∼[Pi(xi)]d
[
L(f t+1)− L(f t)

]
≤ −η̃

t

2

d∑

i=1

mi,t(x
t
i
∗
), (4)

where η̃t and mi,t(·) retain their previous meaning.

Theorem 4 (Convergence for multi-learner GFT). Suppose the vector-valued model for multiple learn-
ers is initialized with f 0 ∈ Hd and returns f t ∈ Hd after t iterations, we have the upper bound of
mini∈Nd

mi,t(x
t
i
∗
) w.r.t. t:

min
i∈Nd

mi,t−1(x
t−1
i
∗
) ≤ 2

dη̇t
Ex∼[Pi(xi)]d

[
L(f 0)

]
+

1

d

t−1∑

l=0

d∑

i=1

(
∥xli
∗ − µi∥2

)
, (5)

where η̇ has the same definition as before.

Communicated Multi-learner Teaching

Proposition 5 If the proximity between f t and f ∗ is sufficiently close, mean-
ing that ∥f t − f ∗∥Hd ≤ ϵ where ϵ is a tiny positive constant, then At equals
the identity matrix Id.
Lemma 6 Under Lipschitz smooth assumption, the communication across
learners will result in a reduction of the multi-learner convex loss L by 0 ≤
L(f t)− L(Atf t) ≤ 2LL∥f t − f ∗∥Hd.
Theorem 7 Suppose the communication in the t-th iteration of multiple
learners is denoted by the matrix At and returns f t+1

At ∈ Hd, for both RFT
and GFT we have:

Ex∼[Pi(xi)]d
[
L(f t+1

At )− L(f t)
]
≤ Ex∼[Pi(xi)]d

[
L(f t+1

At )− L(Atf t)
]
≤ 0.

Experiments and Results

▶ MINT in gray scale.

Simultaneous teaching of a tiger and a cheetah.
t=0 t=10000 t=30000 t=60000 t=70000 t=100000

(a) Single-learner teaching

t=0 t=5000 t=10000 t=30000 t=50000 t=100000

(b) Vanilla MINT
t=0 t=5000 t=10000 t=30000 t=50000 t=80000

(c) Single-learner teaching

t=0 t=5000 t=10000 t=30000 t=50000 t=80000

(d) Vanilla MINT

Figure 2: Comparison between single-learner teaching and MINT. (a) Repeatedly invoking single-learner GFT:
teaching a white tiger at first and subsequently teaching a cheetah. (b) Simultaneous teaching of a white tiger
and a cheetah by GFT. (c) Single-learner teaching of the lion. (d) Partitioning a single lion image into 16 pieces
and teaching them concurrently.

4.3 Communicated multi-learner teaching

An infant would integrate previously learnt knowledge to grasp a new target concept, such as
comprehending what a zebra is by combining the learnt ideas of horses and black-and-white stripes.
Such an efficient paradigm motivates us to explore the communicated MINT, which enables the
communication between learners. In other words, multiple learners can execute linear combination
on the currently learnt functions of all learners [20, 22, 75, 12], that is, At is not constrained as an
identity matrix.

Practically, to direct this communication, the teacher can utilize a two-layer perceptron (MLP) to
derive the matrix At in 8 by searching a matrix A that minimizes ∥Af t−f∗∥Hd as much as possible,
which is an addition step beyond example selection in each iteration.

Proposition 11. If the proximity between f t and f∗ is sufficiently close, meaning that ∥f t−f∗∥Hd ≤
ϵ where ϵ is a tiny positive constant, then At equals the identity matrix Id.

The proof of Prop.11 is given in Appe.B. This suggests that there is no need for MLP to be used in
solving matrix At in every iteration, but only at the beginning, because as the iterations progress, f t

will approach near to f∗.

Lemma 12. Under Assumption 3, the communication across learners will result in a reduction of the
multi-learner convex loss L by 0 ≤ L(f t)− L(Atf t) ≤ 2LL∥f t − f∗∥Hd .

Proof of Lemma 12 is given in Appe.B. The difference in L between the case where the communica-
tion exists and that where it doesn’t is lower bounded by zero and upper bounded by the distance
between f t and f∗. This suggests that if f t is far from f∗, then matrix At can potentially decrease
L significantly at the best case while not causing any increase at the worst case.

Theorem 13. Suppose the communication in the t-th iteration of multiple learners is denoted by the
matrix At and returns f t+1

At ∈ Hd, for both RFT and GFT we have:

Ex∼[Pi(xi)]d
[
L(f t+1

At )− L(f t)
]
≤ Ex∼[Pi(xi)]d

[
L(f t+1

At )− L(Atf t)
]
≤ 0. (17)

Proof of Theorem 13 is in Appe.B. This shows that the addition of communication has led to an
improvement in model updates, which is evident from the larger loss discrepancy between f t+1

At and
f t compared to the difference observed between f t+1

At and Atf t.
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Figure 3: Comparison of convergence performance between single-learner teaching and MINT. (a) is corre-
sponding to (a)-(b) in Fig.2. (b) is for (c)-(d) in Fig.2. (c) pertains to teaching of a colored lion.
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Teaching of a lion by partition.
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Figure 2: Comparison between single-learner teaching and MINT. (a) Repeatedly invoking single-learner GFT:
teaching a white tiger at first and subsequently teaching a cheetah. (b) Simultaneous teaching of a white tiger
and a cheetah by GFT. (c) Single-learner teaching of the lion. (d) Partitioning a single lion image into 16 pieces
and teaching them concurrently.

4.3 Communicated multi-learner teaching

An infant would integrate previously learnt knowledge to grasp a new target concept, such as
comprehending what a zebra is by combining the learnt ideas of horses and black-and-white stripes.
Such an efficient paradigm motivates us to explore the communicated MINT, which enables the
communication between learners. In other words, multiple learners can execute linear combination
on the currently learnt functions of all learners [20, 22, 75, 12], that is, At is not constrained as an
identity matrix.

Practically, to direct this communication, the teacher can utilize a two-layer perceptron (MLP) to
derive the matrix At in 8 by searching a matrix A that minimizes ∥Af t−f∗∥Hd as much as possible,
which is an addition step beyond example selection in each iteration.

Proposition 11. If the proximity between f t and f∗ is sufficiently close, meaning that ∥f t−f∗∥Hd ≤
ϵ where ϵ is a tiny positive constant, then At equals the identity matrix Id.

The proof of Prop.11 is given in Appe.B. This suggests that there is no need for MLP to be used in
solving matrix At in every iteration, but only at the beginning, because as the iterations progress, f t

will approach near to f∗.

Lemma 12. Under Assumption 3, the communication across learners will result in a reduction of the
multi-learner convex loss L by 0 ≤ L(f t)− L(Atf t) ≤ 2LL∥f t − f∗∥Hd .

Proof of Lemma 12 is given in Appe.B. The difference in L between the case where the communica-
tion exists and that where it doesn’t is lower bounded by zero and upper bounded by the distance
between f t and f∗. This suggests that if f t is far from f∗, then matrix At can potentially decrease
L significantly at the best case while not causing any increase at the worst case.

Theorem 13. Suppose the communication in the t-th iteration of multiple learners is denoted by the
matrix At and returns f t+1

At ∈ Hd, for both RFT and GFT we have:

Ex∼[Pi(xi)]d
[
L(f t+1

At )− L(f t)
]
≤ Ex∼[Pi(xi)]d

[
L(f t+1

At )− L(Atf t)
]
≤ 0. (17)

Proof of Theorem 13 is in Appe.B. This shows that the addition of communication has led to an
improvement in model updates, which is evident from the larger loss discrepancy between f t+1

At and
f t compared to the difference observed between f t+1

At and Atf t.
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Figure 3: Comparison of convergence performance between single-learner teaching and MINT. (a) is corre-
sponding to (a)-(b) in Fig.2. (b) is for (c)-(d) in Fig.2. (c) pertains to teaching of a colored lion.
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▶ MINT in three (RGB) channels.
t=0 t=10000 t=50000 t=100000 t=150000 t=210000

(a) Single-learner teaching.
t=0 t=10000 t=50000 t=100000 t=150000 t=210000

(b) Vanilla MINT.
t=0 t=10000 t=50000 t=100000 t=150000 t=210000

(c) Communicated MINT.
Figure 4: Visualization of f t taught by GFT. Starting from a random initialization, the communicated multi-
learner GFT help multiple learners learn a more clear image than the vanilla one followed by single-learner one.

5 Experiments and Results

Testing the teaching of a multi-learner (vector-valued) target model, MINT presents more satisfactory
performance than repeatedly carrying out the single-learner teaching, which is consistent with
our theoretical findings. Detailed configurations and supplementary experiments are given in the
Appendix C.

MINT in gray scale. A grayscale figure can be viewed as a 3D surface where the z axis corresponds
to the level of gray, while the x, y axes depict the placement of pixels [71]. We consider two scenarios:
one involves the simultaneous teaching of a tiger and a cheetah figure, while the other focuses on
the teaching of a lion. After comparing (a) and (b) in Fig.2, we see that when teaching two target
functions by GFT simultaneously, the vanilla MINT requires almost half the number of cost iterations
compared to single-learner teaching, which is also evident from the loss plot shown in Fig.3 (a).
By comparing (c) and (d) in Fig.2, we can observe that dividing a single-learner target figure into
smaller pieces and recasting them into MINT can significantly improve the efficiency, which is also
demonstrated by the loss plot in Fig.3 (b).

MINT in three (RGB) channels. To further demonstrate the benefits of communication, we examine
with a lion image with three channels in RGB format. The loss plot in Fig.3 (c) reveals that the
most efficient teaching is the communicated MINT for both RFT and GFT. The vanilla MINT and
single-learner teaching follow in order of decreasing efficiency. Furthermore, as anticipated, the
multi-learner GFT proves to be more efficient compared to RFT. One intriguing observation is that
the communicated MINT leads to a significant reduction in multi-learner loss at the outset, which
aligns with our theoretical findings in Lemma 12 and confirms the validity of Prop.11 that At could
eventually become an identity matrix after numerous iterations. Fig.4 compares the specific learnt
f t for three versions of GFT during each iteration, wherein we observe that MINT consistently
outperforms the single-learner one, and the learnt image under the communicated MINT is more
clear compared to that of the vanilla one. To be more persuasive, we also offer detailed and additional
experiments in Appendix, including channel-wise visualization of specific f t (Fig.7), RFT-taught
f t (Fig.8-9) and teaching multiple learners with a particular initialization of f0 (Fig.11-10), which
includes an extremely case that only one-time communication is sufficient to help multiple learners
learn f∗ (Fig.15).

6 Concluding Remarks

In this paper, we seek to address a practical limitation of current nonparametric iterative machine
teaching, that is, enable the teaching of multi-learner (vector-valued) target models rather than
restricting the process to single-learner ones. This expansion of teaching ability involves generalizing
the model space from space of scalar-valued functions to that of vector-valued functions. In addressing
multi-learner nonparametric teaching (MINT), we firstly analyze a vanilla MINT where the teacher

Our source code is available at https://github.com/chen2hang/MINT_NonparametricTeaching.
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