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Nonparametric Teaching
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What is Nonparametric Teaching? ‘@ ICML

ing

Nonparametric Teaching builds on the idea of machine teaching [14, 15]-involving
designing a training set (dubbed the teaching set) to help the learner con-
verge to the target functions—but relaxes the assumption of target functions being
parametric [8, 9], allowing for the teaching of nonparametric (viz. non-closed-form)
target functions, with a focus on function space.

Machine teaching can be considered as an of machine learning, where
machine learning aims to learn a model from a dataset, while machine teaching aims
to find a minimal dataset from the target model.

Machine Learning VS.  Machine Teaching
[[|@ froxeyo U
Teaching Set
Training Set
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“Parametric” VS. “Nonparametric” )

The parametric case [8, 9] assumes that f can be represented by a set of parameters
w,e.g., f(x) = (w,x) with input x'.

(a) Parametric IMT (b) Nonparametric IMT

Parametric assumption results in difficulty when the target models are defined to be
functions without dependency on parameters (viz. non-closed-form functions). Such
a limitation is addressed by Nonparametric Teaching [11, 12, 13], which generalizes
model space from a finite dimensional one to an infinite dimensional one.

The loss £ can be general for different tasks, e.g., square loss for regression and hinge loss for classification.
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Graph Neural Teaching (GraNT)
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Graph Property Learning

Graph-structured data, commonly referred to as graphs,
are typically represented by and . The ver-
tices, or nodes, contain , while the edges
link these nodes and capture the ,
collectively forming a complete graph.

2 i
Figure: The implicit mapping.

Graph properties can be categorized as either or . For example,
the node category is a node-level property in social network graphs [3], while the
solubility of molecules is a graph-level property in molecular graphs [10]. Inferring
these graph properties essentially involves learning the implicit mapping from graphs
to these properties [4].
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Graph Convolutional Network (GCN)
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Motivation ‘@ ICML

The motivation comes from two folds:

® Lower the training cost and enhance the of GCN, which is
urgently needed when dealing with . For example, learning
node-level properties in real-world e-commerce relational networks involves
of nodes.
® Expand the of in the context of graph
property learning. “Nonparametric” is a quite concept, which may be of

interest for theoretical analysis but
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Cont. ICML

T If we can nonparametric teaching to GCN training, both problems
including training efficiency and applicability are addressed.
T Unfortunately, the evolution of an GCN is typically achieved by
, whereas nonparametric teaching involves
as the means of function evolution.

Bridging this (theoretical + practical) is of great value and calls for more exami-
nation prior to the application of in the context
of . Can we do that?
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Graph Neural Tangent Kernel

Nonparametic Teaching
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Graph Neural Tangent Kernel
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GraNT Algorithm

PIcmL

Algorithm 1 GraNT Algorithm

Input: Target mapping f* realized by a dense set of graph-
property pairs, initial GCN fyo, the size of selected training
set m < N, small constant € > 0 and maximal iteration
number 7"

Set for < fgo,t =0.

while ¢ < T and ||[fo:(G;) — f*(G,)]NH2 > edo

The teacher selects m teaching graphs:

/+ (Graph—-level) Graphs corresponding
to the m largest |foe(Gi) — f7(Gi)l. */
{Gitm™ = argmax ||[for(Gi) = f*(Gi)],, -
{Gi}mC{Gi}tn

/* (Node-level) Graphs associated with

the m largest Hfm(Gr)’*f“‘(G,)Hz_ «/

{Gi}™ = arg max [7f"'<c’ );f'(GL)} s
{Gi}mC{Gi}n ' milF
with Frobenius norm || - || =.

Provide {G},,” to the GCN learner.
The learner updates fy: based on received {G},,":

// Parameter-based gradient descent.
0" = 0" = % Ygietaiy . VoL(for(Gi), [1(G))-
Sett «t+ 1.

end

By comparing the between the property
true values and the GCN outputs, the nonparamet-
ric teacher examples (graphs)
of the disparity, instead of using all, to

feed to the GCN learner who undergoes learning
(i.e., training).
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Experiments and Results r
We conduct extensive experiments to validate the of GraNT.
GraNT ‘ Dataset Time (s) Loss | MAE | ROC-AUC 1 AP T

QM9 9654.81 2.0444  0.0051%0.0009 - -

ZINC 33033.82 3.1160  0.0048+0.0004 - =

X ogbg-molhiv 2163.50 0.1266 - 0.75724-0.0005 -
ogbg-molpcba 130191.26 0.0577 - - 0.327040.0000

gen-reg 3344.78 0.0086  0.0007+0.0001 - -

gen-cls 11662.25 0.1314 - 0.91504-0.0024 -

QM9 6392.26 (-33.79%)  2.0436  0.005140.0009 - -

ZINC 20935.24 (-36.62%)  3.1165  0.0048+0.0004 - -

ogbg-molhiv 1457.39 (-32.64%)  0.1238 - 0.76764+0.0036 -
ogbg-molpcba | 80465.06 (-38.19%)  0.0577 - - 0.3358+0.0001

gen-reg 2308.97 (-30.97%)  0.0086  0.0007+0.0001 - -

\/ gen-cls 6145.72 (-47.30%)  0.1314 - 0.9157+0.0013 -

QM9 7076.37 (-26.71%)  2.0443  0.0051+0.0009 - -

ZINC 22265.83 (-32.60%) 3.1170  0.0048+-0.0004 - -

ogbg-molhiv 1597.69 (-26.15%)  0.1421 - 0.77051-0.0027 -
ogbg-molpcba | 89858.65 (-30.98%) 0.0575 - - 0.335140.0025

gen-reg 2337.46 (-30.12%)  0.0086  0.0007-+0.0001 - -

gen-cls 8171.21 (-29.93%)  0.1313 - 0.9157+0.0014 -

Table 1: Training time and testing results across different benchmarks. GraNT (B) and GraNT (S) demonstrate similar testing
performance while significantly reducing training time compared to the "without GraNT", across graph-level (QM9, ZINC,
ogbg-molhiv, ogbg-molpcba) and node-level (gen-reg, gen-cls) datasets, for both regression and classification tasks.
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Contribution Summary
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Contributions Summary ‘@ ICML

Main Contribution:
® \We propose (GraNT) that interprets
within the theoretical context of . This enables the
use of greedy algorithms from the latter to effectively
of the graph property learner, GCN.
¢ We unveil a strong between the evolution of a using gradient descent on
its parameters and that of a function using functional gradient descent in
. These connect nonparametric teaching theory to graph

property learning, thus expanding the of nonparametric teaching in
the context of graph property learning.
¢ We demonstrate the of GraNT through extensive experiments in

graph property learning. Specifically, GraNT saves training time for graph-level
regression (-36.62%), graph-level classification (-38.19%), node-level regression (-
30.97%) and node-level classification (-47.30%), while upkeeping its generalization

performance. 17720



Thank you for listening!
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