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Nonparametric Teaching

The Bridge Between NT and Graph Property Learning: GraNT Algorithm

Graph Neural Tangent Kernel

Nonpara.metric teaching (N'I.'). (Zhang gt al., 2023b;a; 202.4a) presents Algorithm 1 GraNT Algorithm /+ (Node-level) Graphs associated with
a theoretlcgl fra.lmework to faC|!|taj[e ef.f|C|elnt. example selection when the The .evolution of a Grgph Convolutional Network (GCN) is typically gchigved by Input: Target mapping f* realized by a dense set of graph- the m largest Mat(G)=S"(Glz y
target function is nonparametric, i.e., implicitly definec. gradient descent on its parameters, whereas nonparametric teaching involves property pairs, initial GCN fyo, the size of selected training (Gil,," —  argmax H [zfet(Gi)— f*(Gi)} H
. . . . . " . . < . . . 1 m - n’i m 9
It builds on the idea of machine teaching (Zhu, 2015: Zhu et al., 2018), functional gradient descent as the means of function evolution. Islitm?e;TN, small constant ¢ > 0 and maximal iteration L {Gi}mgH{G’,i}N F
. . . . _ . . . . - . . . 1 roocnius norm || - .
which involves designing a training set (dubbed the teaching set) to help Bridging this (theoretical + practical) gap is of great value and calls for more q v | u* d
the learner rapidly converge to the target functions. examination prior to the application of nonparametric teaching algorithms in the et for <= Joo, 0 =0, Provide {G'i}n - to the GCN learner.
: : : : ' hile t < 7" and t(G) — (GG >ed . ’ 1,
Machine Leaming VS,  Machine Teaching context of graph property learning. while t < 7 and [|[fyr (G:) = *(Gi)l |, > e do The learner updates fy: based on received {G},, "
— o The teacher selects m teaching graphs: // Parameter-based gradient descent.
AN AN D ° ' g /* (Graph—-level) Graphs corresponding 0f «— 6° — % ZGiG{Gi}m* Veﬁ(fet(Gi), f*(Gz))
| N f* - X — y f* \"n] - to*the m largest |fot(G:) — fF(G))]. */ Sett <t + 1.
B - {Gitm = argmax |[[fo:(Gi) — [(Gi)],. ]l end
— . Nonparametic Teaching {Gz }m g {Gz }N
Teaching Set

By comparing the disparity between the property true values and the GCN outputs, the nonpara-
metric teacher selectively chooses examples (graphs) of the greatest disparity, instead of using all,
to feed to the GCN learner who undergoes learning (i.e., training).

Training Set

NT (Zhang et al., 2023b;a; 2024a) relaxes the assumption of target

functions' f being parametric (Liu et al., 2017; 2018), which is f can Graph Neural Tangent Kernel (Jacot et al., 2018; Du et al., 2019; Krishnagopal
be represented by a set of parameters w, e.g., f(x) = (w, x) with input & Ruiz, 2023) is a symmetric and positive definite kernel function, which is derived
x, to encompass the teaching of nonparameiric target functions. from the analysis of the evolution of a GCN. Experiments and Results
Kp(Gy.-) <8f p(Gi) Of et(°)> We conduct extensive experiments to validate the effectiveness of GraNT.
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00 00 GraNT Dataset Time (s) Loss | MAE | ROC-AUC 1 AP 1
1 QM9 9654.81 2.0444  0.0051=0.0009 . .
/ 2 ZINC 33033.82 3.1160  0.0048+0.0004 i i
it | P\ X ogbg-molhiv 2163.50 0.1266 i 0.757240.0005 -
; i G“M :(;Af) ogbg-molpcba 130191.26 0.0577 - - 0.3270+0.0000
(a) Parametric IMT (b) Nonparametric IMT Graph Gy = (X, 4) | Nodes 1 2 3 4 SeIeS 3344.78 0.0086 - 0.00074-0.0001 ) )
ot 1l 2 3 | mﬁ. gen-cls 11662.25 0.1314 - 0.9150+0.0024 -
IThe loss £ can be general for different tasks, e.g., square loss for regression and hinge 2 i i QMO 6392.26 2.0436  0.005140.0009 ; )
loss for classification. : - Adjacency M 4 ZINC 20935.24 3.1165 0.0048+0.0004 i i
Adisceney Matix A] eighs p| ogbg-molhiv | 1457.39 0.1238 - 0.767640.0036 -
| -~ - Feature Aggregation ogbg-molpcba | 80465.06 0.0577 - - 0.3358+0.0001
Graph Property Learning | - © Comtnio gen-reg 2308.97 0.0086  0.000740.0001 . .
\/ gen-cls 6145.72 0.1314 - 0.9157+0.0013 -
- _ Main Contribution ZINC 22265.83 (-32.60%) 3.1170  0.0048=0.0004 i i
ferred to as graphs’ are typically repre g| ogbg-molhiv | 1597.69 (-26.15%)  0.1421 - 0.7705+0.0027 i
sented by vertices and .edges (Hamil- Our key contributions are: ogbg-molpcba | 89858.65 (-30.98%) 0.0575 - - 0.3351:0.0025
ton et al., 2017; Chami et al., 2022). ' | | gen-reg 2337.46 (-30.12%)  0.0086  0.0007+0.0001 - -
The vertices, or nodes. contain individ- » We propose Graph Neural Teaching (GraNT) that interprets graph property learn- gen-cls 8171.21 (-29.93%)  0.1313 ] 0.9157--0.0014 ]

iIng within the theoretical context of nonparametric teaching. This enables the use

Table 1: Training time and testing results across different benchmarks. GraNT (B) and GraNT (S) demonstrate similar testing

ual features, while the edges link these

nodes and Capture the structural infor- of greedy algorithms from the latter to effeCtively enhance the Iearning efficiency performance while significantly reducing training time compared to the "without GraNT", across graph-level (QM9, ZINC,
mation. colle Ctively formin gac ompl ete | of the graph property Iearner, GCN. ogbg-molhiv, ogbg-molpcba) and node-level (gen-reg, gen-cls) datasets, for both regression and classification tasks.
graph | r, Jure: The implt mapping f* between a graph » We unveil a strong link between the evolution of a GCN using gradient descent on S .
. . . ] ] ] ] . — \\/| u 0.80 o
its parameters and that of a function using functional gradient descent in nonpara- with GraNT (B) & s WW
. . - . LL] 0.0070 e i = ‘
Graph properties can be categorized as either node-level or graph-level. metric teaching. Thes_e connect nonparametric teaching .theory to graph property < T EENTES) § \ Project Page
For example, the node Category |S a node_level property |n SOClal network Iearnlng, thUS eXpandlng the app|ICabI|Ity Of nOnparametnC teaChlng IN the context }%00065 EO-% |
graphs (Fan et al., 2019), while the solubility of molecules is a graph-level of graph property learning. | | | s 5 __ without GraNT
property in molecular graphs (Ramakrishnan et al., 2014). Inferring these » We demonstrate the effectiveness of GraNT through extensive experiments in | = with GraNT (B)
] ] ] ] ] - ] . “p .. . 0.0050 ' —— with GraNT (S)
graph properties essentially involves learning the implicit mapping from graph property learning. Specifically, GraNT saves ftraining time for graph-level T U ..
: . ' _ o _ 1fi ' - o _ ' Wallclock Time (s) Wallclock Time (s)
graphs to these properties (Hamilton et al., 2017). regression (-36.62%), graph-level classification (-38.19%), node-level regression (2) ZING MAE. (b) ogbg-molhiv ROC-AUC.

(-30.97%) and node-level classification (-47.30%), while upkeeping its generaliza-

tion performance. Figure: Validation set performance for graph-level tasks: ZINC

(regression) and ogbg-molhiv (classification).



