
Nonparametric Teaching for Graph Property Learners
Chen Zhang1 ∗, Weixin Bu2 ∗, Zeyi Ren1, Zhengwu Liu1, Yik-Chung Wu1, Ngai Wong1

1The University of Hong Kong 2Reversible Inc

Nonparametric Teaching

Nonparametric teaching (NT) (Zhang et al., 2023b;a; 2024a) presents
a theoretical framework to facilitate efficient example selection when the
target function is nonparametric, i.e., implicitly defined.

It builds on the idea of machine teaching (Zhu, 2015; Zhu et al., 2018),
which involves designing a training set (dubbed the teaching set) to help
the learner rapidly converge to the target functions.

Machine Learning Machine TeachingVS.

Training Set
Teaching Set

NT (Zhang et al., 2023b;a; 2024a) relaxes the assumption of target
functions† f being parametric (Liu et al., 2017; 2018), which is f can
be represented by a set of parameters w, e.g., f (x) = ⟨w,x⟩ with input
x, to encompass the teaching of nonparametric target functions.Nonparametric Iterative Machine Teaching

w∗

w0

wtp

wtq

(a) Parametric IMT

f 0

f tp

f tq

f ∗

(b) Nonparametric IMT

Figure 1. Comparison between parametric and nonparametric IMT
in 3D space. (a): Parameters are precisely vectors represented by
a point in 3D space, which would be updated gradually towards
w∗. (b): Nonparametric model f can be denoted by a surface in
3D, which would evolve in more complicated fashion.

to a nonparametric target function f∗. Figure 1 provides an
intuitive comparison between parametric and nonparametric
iterative teaching in a 3-dimensional space.

Shifting our focus to functions, we formulate NIMT as
an instance of functional optimization problem (Singer,
1974; Zoppoli et al., 2002; Mroueh et al., 2019; Shen et al.,
2020), and then derive two algorithms (one picks exam-
ples randomly, and the other picks examples in an greedy
fashion). Without loss of generality, we are mainly con-
cerned with the Reproducing Kernel Hilbert Space (RKHS)
in this paper. We start with a simple baseline algorithm,
called Random Functional Teaching (RFT), which essen-
tially adopts uniform sampling and serves as a functional
analogue of stochastic gradient descent (Ruder, 2016; Hardt
et al., 2016). In the context of IMT, we analyze the func-
tional gradient descent method (Mason et al., 1999a; Shen
et al., 2020) in RKHS, and then find that based on the chain
rule for functional gradients (Gelfand et al., 2000; Cole-
man, 2012), the gradient in NIMT can be expressed by the
multiplication of a scalar governing the magnitude and the
kernel function with the teaching example as its argument.
Therefore, steepening gradients is equivalent to maximizing
that scalar, which naturally leads to our greedy algorithm
– Greedy FT (GFT). GFT picks examples evaluated at the
point where the target and current models reach their maxi-
mal difference (Arbel et al., 2019; Cormen et al., 2022). Fur-
thermore, under mild assumptions, we theoretically prove
the convergence of both RFT and GFT, and then show that
the ITD of GFT is lower than that of RFT. This concludes
that GFT yields a tighter upper bound for ITD. Finally,
we validate our theoretical findings with a number of ex-
periments in both synthetic and real-world datasets under
nonparametric scenarios. To summarize, the contributions
of our work are listed as follows.

• To our knowledge, we are the first to comprehensively
study Nonparametric Iterative Machine Teaching (NIMT),
which focuses on exploring iterative algorithms for teach-

ing parameter-free target models from the optimization
perspective. Instead of operating in the finite-dimensional
space of parameters, we formulate NIMT as a functional
optimization in the space of infinite-dimensional func-
tions, a more general space of models (i.e., RKHS is
considered), in Section 4.1. NIMT is a natural generation
of IMT (Liu et al., 2017), shifting the parametric paradigm
to a nonparametric one.

• We propose two teaching algorithms (RFT and GFT). RFT
is based on random sampling with ground truth labels, and
the derivation of GFT is based on the maximization of
the informative scalar introduced in Proposition 5 in or-
der to steepen gradients. These two teaching algorithms
proposed in Section 4.2 fill the gap for teaching nonpara-
metric learners in IMT.

• We theoretically analyze the asymptotic behavior of both
RFT and GFT in Section 4.3. We prove that per-iteration
reduction of loss L for RFT and GFT has a negative upper
bound expressed by the discrepancy of iterative teaching
defined in Definition 10, and we derive that the ITD of
GFT is O(ψ( 2L(f0)

η̃ϵ )) (detailed notations are introduced
in the subsequent sections), which is shown to be lower
than the ITD of RFT, O(2L(f0)/ (η̃ϵ)).

2. Related Work
Machine teaching. There has been a recent growth of in-
terest in the research of machine teaching (Zhu, 2015; Zhu
et al., 2018; Liu et al., 2017; 2018; Wang et al., 2021). Batch
machine teaching studies behaviors of version space learn-
ers (Chen et al., 2018; Tabibian et al., 2019), linear learners
(Liu et al., 2016), reinforcement learners (Kamalaruban
et al., 2019; Zhang et al., 2020b) along with forgetful learn-
ers (Hunziker et al., 2018; Liu et al., 2018) and multiple
learners (Zhu et al., 2017). Further, taking the learner’s
optimization algorithm into consideration, iterative teaching
has been recently studied (Liu et al., 2017; 2018; Peltola
et al., 2019; Lessard et al., 2019; Liu et al., 2021; Xu et al.,
2021; Qiu et al., 2022). (Liu et al., 2021) considers a label
synthesis teacher and (Qiu et al., 2022) proposes a genera-
tive teacher. (Xu et al., 2021) improves the scalability and
efficiency of the iterative teaching algorithm with locality-
sensitive sampling. Different from existing works that focus
on parametric learners, we aim to teach a nonparametric
learner. In this regime, One of the most related work is
(Mansouri et al., 2019) which analyzes sequential teaching
from the perspective of hypothesis pruning without spec-
ifying a parameter for hypothesis. In contrast, this work
systematically investigates nonparametric teaching from the
optimization perspective. Besides, (Kumar et al., 2021;
Qian et al., 2022) are also highly related, since they study
non-gradient-based kernel learners under the batch setting.
However, they are not strictly nonparametric teaching since

2

†The loss L can be general for different tasks, e.g., square loss for regression and hinge
loss for classification.

Graph Property Learning

Graph-structured data, commonly re-
ferred to as graphs, are typically repre-
sented by vertices and edges (Hamil-
ton et al., 2017; Chami et al., 2022).
The vertices, or nodes, contain individ-
ual features, while the edges link these
nodes and capture the structural infor-
mation, collectively forming a complete
graph.

𝑓

𝑓∗

𝑮

𝑓∗ሺ           ሻ
𝑓ሺ           ሻ

Figure: The implicit mapping f ∗ between a graph
G and its property f ∗(G).

Graph properties can be categorized as either node-level or graph-level.
For example, the node category is a node-level property in social network
graphs (Fan et al., 2019), while the solubility of molecules is a graph-level
property in molecular graphs (Ramakrishnan et al., 2014). Inferring these
graph properties essentially involves learning the implicit mapping from
graphs to these properties (Hamilton et al., 2017).

Content by: Chen Zhang.

The Bridge Between NT and Graph Property Learning:
Graph Neural Tangent Kernel

The evolution of a Graph Convolutional Network (GCN) is typically achieved by
gradient descent on its parameters, whereas nonparametric teaching involves
functional gradient descent as the means of function evolution.

Bridging this (theoretical + practical) gap is of great value and calls for more
examination prior to the application of nonparametric teaching algorithms in the
context of graph property learning.

Nonparametic Teaching

Graph Neural Tangent Kernel

Graph Neural Tangent Kernel (Jacot et al., 2018; Du et al., 2019; Krishnagopal
& Ruiz, 2023) is a symmetric and positive definite kernel function, which is derived
from the analysis of the evolution of a GCN.

Kθt(Gi, ·) :=
〈
∂fθt(Gi)

∂θt
,
∂fθt(·)
∂θt

〉

2

1

3

4

× × ×

× ×

𝑨′𝑿(0)
(𝑨′)2𝑿(0)𝑿(0)

⨁ ⨁

⨁

10

Adjacency Matrix 𝑨′

21 3 4

2

1

3

4

Nodes

1
2

34

Graph 𝑮′ 𝟒 = (𝑿′, 𝑨′)

⨁: Concatenation

: Weights

: Feature Aggregation

1
2

3

Graph 𝑮 𝟑 = (𝑿, 𝑨)

Adjacency Matrix 𝑨

21 3

2

1

3

Nodes

0 1

⨁ ⨁

⨁

𝜎

2

1

3

Main Contribution

Our key contributions are:
▶ We propose Graph Neural Teaching (GraNT) that interprets graph property learn-

ing within the theoretical context of nonparametric teaching. This enables the use
of greedy algorithms from the latter to effectively enhance the learning efficiency
of the graph property learner, GCN.

▶ We unveil a strong link between the evolution of a GCN using gradient descent on
its parameters and that of a function using functional gradient descent in nonpara-
metric teaching. These connect nonparametric teaching theory to graph property
learning, thus expanding the applicability of nonparametric teaching in the context
of graph property learning.

▶ We demonstrate the effectiveness of GraNT through extensive experiments in
graph property learning. Specifically, GraNT saves training time for graph-level
regression (-36.62%), graph-level classification (-38.19%), node-level regression
(-30.97%) and node-level classification (-47.30%), while upkeeping its generaliza-
tion performance.

GraNT Algorithm
Nonparametric Teaching for Graph Property Learners

Algorithm 1 GraNT Algorithm
Input: Target mapping f∗ realized by a dense set of graph-
property pairs, initial GCN fθ0 , the size of selected training
set m ≤ N , small constant ϵ > 0 and maximal iteration
number T .

Set fθt ← fθ0 , t = 0.

while t ≤ T and ∥[fθt(Gi)− f∗(Gi)]N∥2 ≥ ϵ do
The teacher selects m teaching graphs:

/* (Graph-level) Graphs corresponding

to the m largest |fθt(Gi)− f∗(Gi)|. */

{Gi}m∗
= argmax

{Gi}m⊆{Gi}N

∥[fθt(Gi)− f∗(Gi)]m∥2.

/* (Node-level) Graphs associated with

the m largest
∥fθt (Gi)−f∗(Gi)∥2

ni
. */

{Gi}m∗
= argmax

{Gi}m⊆{Gi}N

∥∥∥
[
fθt (Gi)−f∗(Gi)

ni

]
m

∥∥∥
F

,

with Frobenius norm ∥ · ∥F .

Provide {Gi}m∗ to the GCN learner.

The learner updates fθt based on received {Gi}m∗:

// Parameter-based gradient descent.
θt ← θt − η

m

∑
Gi∈{Gi}m

∗ ∇θL(fθt(Gi), f
∗(Gi)).

Set t← t+ 1.
end

∥∂L(fθ)
∂fθ
∥H diminishes (Boyd et al., 2004; Coleman, 2012).

This relationship becomes especially noteworthy when L is
strongly convex with a larger convexity constant (Kakade
& Tewari, 2008; Arjevani et al., 2016). Leveraging these
insights, the GraNT algorithm selects graphs by

{Gi}m∗
= argmax

{Gi}m⊆{Gi}N

∥[fθ(Gi)− f∗(Gi)]m∥2 . (23)

The pseudo code, including the node-level version, is pro-
vided in Algorithm 1.

5. Experiments and Results
We start by evaluating GraNT on graph-level regression
and classification tasks, then proceed to validate it on node-
level tasks. The overall results on the test set are shown
in Table 1, which clearly highlights the effectiveness of
GraNT in graph property learning: it reduces training time
by 36.62% for graph-level regression, 38.19% for graph-
level classification, 30.97% for node-level regression, and
47.30% for node-level classification, all while maintaining
comparable testing performance. Detailed settings are given
in Appendix C.

Given the common practice of training GCN in batches, i.e.,
graphs are fed in batches, it is both natural and intuitive to

0 5000 10000 15000 20000 25000 30000
Wallclock Time (s)

3.0

3.5

4.0

4.5

5.0

5.5

Va
lid

at
io

n 
Lo

ss

without GraNT
with GraNT (B)
with GraNT (S)

(a) ZINC Loss.

0 5000 10000 15000 20000 25000 30000
Wallclock Time (s)

0.0050

0.0055

0.0060

0.0065

0.0070

0.0075

Va
lid

at
io

n 
M

A
E

without GraNT
with GraNT (B)
with GraNT (S)

(b) ZINC MAE.

0 500 1000 1500 2000
Wallclock Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

Va
lid

at
io

n 
Lo

ss

without GraNT
with GraNT (B)
with GraNT (S)

(c) ogbg-molhiv Loss.

0 500 1000 1500 2000
Wallclock Time (s)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Va
lid

at
io

n 
R

O
C

-A
U

C

without GraNT
with GraNT (B)
with GraNT (S)

(d) ogbg-molhiv ROC-AUC.

Figure 3: Validation set performance for graph-level tasks:
ZINC (regression) and ogbg-molhiv (classification).

implement GraNT at the batch level. This involves selecting
batches that exhibit the largest average discrepancy between
the actual properties and the corresponding GCN outputs, re-
ferred to as GraNT (B). Meanwhile, another variant, called
GraNT (S), selects single graph with the largest discrepan-
cies within each batch in proportion, then reorganizes the
selected graphs into new batches.

Graph-level tasks. We evaluate GraNT using several
widely recognized benchmark datasets as follows:

• QM9 (Wu et al., 2018): 130k organic molecules graphs
with quantum chemical properties (regression task);

• ZINC (Gómez-Bombarelli et al., 2018): 250k molecular
graphs with bioactivity and solubility chemical properties
(regression task);

• ogbg-molhiv (Hu et al., 2020): 41k molecular graphs with
HIV inhibitory activity properties (binary classification
task);

• ogbg-molpcba (Hu et al., 2020): 438k molecular graphs
with bioactivity properties (multi-task binary classifica-
tion task).

To clearly illustrate the practical efficiency of GraNT, we
plot the wallclock time versus loss/metric curves. This is
done by conducting a validation after each training epoch,
i.e., performing an evaluation on the validation dataset after
each training process. Specifically, we display the validation
set loss and the typical Mean Absolute Error (MAE) for
ZINC in Figure 3 (a) and (b), respectively. In both plots,
one can see that the curves for GraNT (B) and GraNT (S)
span about two-thirds of the width of the "without GraNT"
curve, with both the loss and MAE for GraNT decreasing
at a faster rate than those for the "without GraNT" case.

7

Nonparametric Teaching for Graph Property Learners

Algorithm 1 GraNT Algorithm
Input: Target mapping f∗ realized by a dense set of graph-
property pairs, initial GCN fθ0 , the size of selected training
set m ≤ N , small constant ϵ > 0 and maximal iteration
number T .

Set fθt ← fθ0 , t = 0.

while t ≤ T and ∥[fθt(Gi)− f∗(Gi)]N∥2 ≥ ϵ do
The teacher selects m teaching graphs:

/* (Graph-level) Graphs corresponding

to the m largest |fθt(Gi)− f∗(Gi)|. */

{Gi}m∗
= argmax

{Gi}m⊆{Gi}N

∥[fθt(Gi)− f∗(Gi)]m∥2.

/* (Node-level) Graphs associated with

the m largest
∥fθt (Gi)−f∗(Gi)∥2

ni
. */

{Gi}m∗
= argmax

{Gi}m⊆{Gi}N

∥∥∥
[
fθt (Gi)−f∗(Gi)

ni

]
m

∥∥∥
F

,

with Frobenius norm ∥ · ∥F .

Provide {Gi}m∗ to the GCN learner.

The learner updates fθt based on received {Gi}m∗:

// Parameter-based gradient descent.
θt ← θt − η

m

∑
Gi∈{Gi}m

∗ ∇θL(fθt(Gi), f
∗(Gi)).

Set t← t+ 1.
end

∥∂L(fθ)
∂fθ
∥H diminishes (Boyd et al., 2004; Coleman, 2012).

This relationship becomes especially noteworthy when L is
strongly convex with a larger convexity constant (Kakade
& Tewari, 2008; Arjevani et al., 2016). Leveraging these
insights, the GraNT algorithm selects graphs by

{Gi}m∗
= argmax

{Gi}m⊆{Gi}N

∥[fθ(Gi)− f∗(Gi)]m∥2 . (23)

The pseudo code, including the node-level version, is pro-
vided in Algorithm 1.

5. Experiments and Results
We start by evaluating GraNT on graph-level regression
and classification tasks, then proceed to validate it on node-
level tasks. The overall results on the test set are shown
in Table 1, which clearly highlights the effectiveness of
GraNT in graph property learning: it reduces training time
by 36.62% for graph-level regression, 38.19% for graph-
level classification, 30.97% for node-level regression, and
47.30% for node-level classification, all while maintaining
comparable testing performance. Detailed settings are given
in Appendix C.

Given the common practice of training GCN in batches, i.e.,
graphs are fed in batches, it is both natural and intuitive to

0 5000 10000 15000 20000 25000 30000
Wallclock Time (s)

3.0

3.5

4.0

4.5

5.0

5.5

Va
lid

at
io

n 
Lo

ss

without GraNT
with GraNT (B)
with GraNT (S)

(a) ZINC Loss.

0 5000 10000 15000 20000 25000 30000
Wallclock Time (s)

0.0050

0.0055

0.0060

0.0065

0.0070

0.0075

Va
lid

at
io

n 
M

A
E

without GraNT
with GraNT (B)
with GraNT (S)

(b) ZINC MAE.

0 500 1000 1500 2000
Wallclock Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

Va
lid

at
io

n 
Lo

ss

without GraNT
with GraNT (B)
with GraNT (S)

(c) ogbg-molhiv Loss.

0 500 1000 1500 2000
Wallclock Time (s)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Va
lid

at
io

n 
R

O
C

-A
U

C

without GraNT
with GraNT (B)
with GraNT (S)

(d) ogbg-molhiv ROC-AUC.

Figure 3: Validation set performance for graph-level tasks:
ZINC (regression) and ogbg-molhiv (classification).

implement GraNT at the batch level. This involves selecting
batches that exhibit the largest average discrepancy between
the actual properties and the corresponding GCN outputs, re-
ferred to as GraNT (B). Meanwhile, another variant, called
GraNT (S), selects single graph with the largest discrepan-
cies within each batch in proportion, then reorganizes the
selected graphs into new batches.

Graph-level tasks. We evaluate GraNT using several
widely recognized benchmark datasets as follows:

• QM9 (Wu et al., 2018): 130k organic molecules graphs
with quantum chemical properties (regression task);

• ZINC (Gómez-Bombarelli et al., 2018): 250k molecular
graphs with bioactivity and solubility chemical properties
(regression task);

• ogbg-molhiv (Hu et al., 2020): 41k molecular graphs with
HIV inhibitory activity properties (binary classification
task);

• ogbg-molpcba (Hu et al., 2020): 438k molecular graphs
with bioactivity properties (multi-task binary classifica-
tion task).

To clearly illustrate the practical efficiency of GraNT, we
plot the wallclock time versus loss/metric curves. This is
done by conducting a validation after each training epoch,
i.e., performing an evaluation on the validation dataset after
each training process. Specifically, we display the validation
set loss and the typical Mean Absolute Error (MAE) for
ZINC in Figure 3 (a) and (b), respectively. In both plots,
one can see that the curves for GraNT (B) and GraNT (S)
span about two-thirds of the width of the "without GraNT"
curve, with both the loss and MAE for GraNT decreasing
at a faster rate than those for the "without GraNT" case.

7

By comparing the disparity between the property true values and the GCN outputs, the nonpara-
metric teacher selectively chooses examples (graphs) of the greatest disparity, instead of using all,
to feed to the GCN learner who undergoes learning (i.e., training).

Experiments and Results

We conduct extensive experiments to validate the effectiveness of GraNT.Nonparametric Teaching for Graph Property Learners

GraNT Dataset Time (s) Loss ↓ MAE ↓ ROC-AUC ↑ AP ↑

✗

QM9 9654.81 2.0444 0.0051±0.0009 - -
ZINC 33033.82 3.1160 0.0048±0.0004 - -

ogbg-molhiv 2163.50 0.1266 - 0.7572±0.0005 -
ogbg-molpcba 130191.26 0.0577 - - 0.3270±0.0000

gen-reg 3344.78 0.0086 0.0007±0.0001 - -
gen-cls 11662.25 0.1314 - 0.9150±0.0024 -

✓

B

S

QM9 6392.26 (-33.79%) 2.0436 0.0051±0.0009 - -
ZINC 20935.24 (-36.62%) 3.1165 0.0048±0.0004 - -

ogbg-molhiv 1457.39 (-32.64%) 0.1238 - 0.7676±0.0036 -
ogbg-molpcba 80465.06 (-38.19%) 0.0577 - - 0.3358±0.0001

gen-reg 2308.97 (-30.97%) 0.0086 0.0007±0.0001 - -
gen-cls 6145.72 (-47.30%) 0.1314 - 0.9157±0.0013 -

QM9 7076.37 (-26.71%) 2.0443 0.0051±0.0009 - -
ZINC 22265.83 (-32.60%) 3.1170 0.0048±0.0004 - -

ogbg-molhiv 1597.69 (-26.15%) 0.1421 - 0.7705±0.0027 -
ogbg-molpcba 89858.65 (-30.98%) 0.0575 - - 0.3351±0.0025

gen-reg 2337.46 (-30.12%) 0.0086 0.0007±0.0001 - -
gen-cls 8171.21 (-29.93%) 0.1313 - 0.9157±0.0014 -

Table 1: Training time and testing results across different benchmarks. GraNT (B) and GraNT (S) demonstrate similar testing
performance while significantly reducing training time compared to the "without GraNT", across graph-level (QM9, ZINC,
ogbg-molhiv, ogbg-molpcba) and node-level (gen-reg, gen-cls) datasets, for both regression and classification tasks.

Time (s) MAE ↓
AL-3DGraph‡ (Subedi et al., 2024) 9200.27 0.7991
AL-3DGraph♯ (Subedi et al., 2024) 9364.74 0.4719
AL-3DGraph§ (Subedi et al., 2024) 12601.77 0.1682
GraNT (B) 6392.26 0.0051
GraNT (S) 7076.37 0.0051

‡: lr=5e-5, batch_size=256, which matches GraNT settings.
♯: lr=5e-4, batch_size=256.
§: lr=5e-4, batch_size=32, which corresponds to the default
settings used in the provided code for that paper.

Table 2: Comparison of GraNT with active learning-based
methods on the QM9 dataset.

Moreover, GraNT (B) takes slightly less time to terminate
than GraNT (S). This is because GraNT (S) selects teaching
graphs from each batch, which can add extra operational
time compared to GraNT (B) that uses direct batch selection.

Figures 3 (c) and (d) show the loss and the commonly used
ROC-AUC curves on the validation set, respectively, for
ogbg-molhiv. Both plots clearly highlight the superiority
of GraNT over the "without GraNT". In addition, Figure 3
(d) shows that the ROC-AUC values of GraNT (B) and
GraNT (S) consistently exceed that of "without GraNT"
once the wallclock time reaches approximately 500s. How-
ever, the curves appear relatively jagged, which can be at-
tributed to the label imbalance in this benchmark dataset.

Time (s) ROC-AUC ↑
GCN (Kipf & Welling, 2017) 2888.80 0.7385
GCN+Virtual Node (Kipf & Welling, 2017) 3083.16 0.7608
GMoE-GCN (Wang et al., 2023) 3970.16 0.7536
GMoE-GIN (Wang et al., 2023) 3932.06 0.7468
GDeR-GCN† (Zhang et al., 2024b) 1772.23 0.7261
GDeR-PNA† (Zhang et al., 2024b) 5088.88 0.7616
GraNT (B) 1457.39 0.7676
GraNT (S) 1597.69 0.7705

†: batch_size=500, retain_ratio=0.7.

Table 3: Comparison of GraNT with recent efficient methods
on the ogbg-molhiv dataset.

This imbalance also explains why, even when the validation
loss decreases significantly, the ROC-AUC curve does not
rise to a higher range. The detailed numerical results for
training time and testing performance are provided in Ta-
ble 1. The comparisons between GraNT and recent SOTA
methods are shown in Table 2 for QM9 and Table 3 for
ogbg-molhiv.

Node-level tasks. We also assess GraNT for node-level
property learning using synthetic data. Specifically, we
utilize the graphon, a typical limit object of a convergent
sequence of graphs (Xu et al., 2021; Xia et al., 2023), to
generate two synthetic datasets: gen-reg (containing 50k
graphs) for regression and gen-cls (containing 50k graphs)
for classification.

8

0 5000 10000 15000 20000 25000 30000
Wallclock Time (s)

0.0050

0.0055

0.0060

0.0065

0.0070

0.0075

Va
lid

at
io

n 
M

A
E

without GraNT
with GraNT (B)
with GraNT (S)

(a) ZINC MAE.

0 500 1000 1500 2000
Wallclock Time (s)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Va
lid

at
io

n 
R

O
C

-A
U

C

without GraNT
with GraNT (B)
with GraNT (S)

(b) ogbg-molhiv ROC-AUC.

Figure: Validation set performance for graph-level tasks: ZINC
(regression) and ogbg-molhiv (classification).

Project Page


