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Machine Teaching

Machine teaching (MT) is the study of how to design the optimal teaching
set, typically with minimal examples, so that learners can quickly learn
target models based on these examples.

It can be considered an inverse problem of machine learning, where ma-
chine learning aims to learn model parameters from a dataset, while MT
aims to find a minimal dataset from the target model parameters.

Considering the interaction manner between teachers and learners, MT
can be conducted in either
▶ batch fashion where the teacher is allowed to interact with the learner

once, or
▶ iterative fashion where an iterative teacher would feed examples

sequentially based on current status of the iterative learner.

Motivation
Nonparametric Iterative Machine Teaching

w∗

w0

wtp

wtq

(a) Parametric IMT

f 0

f tp

f tq

f ∗

(b) Nonparametric IMT

Figure 1. Comparison between parametric and nonparametric IMT
in 3D space. (a): Parameters are precisely vectors represented by
a point in 3D space, which would be updated gradually towards
w∗. (b): Nonparametric model f can be denoted by a surface in
3D, which would evolve in more complicated fashion.

to a nonparametric target function f∗. Figure 1 provides an
intuitive comparison between parametric and nonparametric
iterative teaching in a 3-dimensional space.

Shifting our focus to functions, we formulate NIMT as
an instance of functional optimization problem (Singer,
1974; Zoppoli et al., 2002; Mroueh et al., 2019; Shen et al.,
2020), and then derive two algorithms (one picks exam-
ples randomly, and the other picks examples in an greedy
fashion). Without loss of generality, we are mainly con-
cerned with the Reproducing Kernel Hilbert Space (RKHS)
in this paper. We start with a simple baseline algorithm,
called Random Functional Teaching (RFT), which essen-
tially adopts uniform sampling and serves as a functional
analogue of stochastic gradient descent (Ruder, 2016; Hardt
et al., 2016). In the context of IMT, we analyze the func-
tional gradient descent method (Mason et al., 1999a; Shen
et al., 2020) in RKHS, and then find that based on the chain
rule for functional gradients (Gelfand et al., 2000; Cole-
man, 2012), the gradient in NIMT can be expressed by the
multiplication of a scalar governing the magnitude and the
kernel function with the teaching example as its argument.
Therefore, steepening gradients is equivalent to maximizing
that scalar, which naturally leads to our greedy algorithm
– Greedy FT (GFT). GFT picks examples evaluated at the
point where the target and current models reach their maxi-
mal difference (Arbel et al., 2019; Cormen et al., 2022). Fur-
thermore, under mild assumptions, we theoretically prove
the convergence of both RFT and GFT, and then show that
the ITD of GFT is lower than that of RFT. This concludes
that GFT yields a tighter upper bound for ITD. Finally,
we validate our theoretical findings with a number of ex-
periments in both synthetic and real-world datasets under
nonparametric scenarios. To summarize, the contributions
of our work are listed as follows.

• To our knowledge, we are the first to comprehensively
study Nonparametric Iterative Machine Teaching (NIMT),
which focuses on exploring iterative algorithms for teach-

ing parameter-free target models from the optimization
perspective. Instead of operating in the finite-dimensional
space of parameters, we formulate NIMT as a functional
optimization in the space of infinite-dimensional func-
tions, a more general space of models (i.e., RKHS is
considered), in Section 4.1. NIMT is a natural generation
of IMT (Liu et al., 2017), shifting the parametric paradigm
to a nonparametric one.

• We propose two teaching algorithms (RFT and GFT). RFT
is based on random sampling with ground truth labels, and
the derivation of GFT is based on the maximization of
the informative scalar introduced in Proposition 5 in or-
der to steepen gradients. These two teaching algorithms
proposed in Section 4.2 fill the gap for teaching nonpara-
metric learners in IMT.

• We theoretically analyze the asymptotic behavior of both
RFT and GFT in Section 4.3. We prove that per-iteration
reduction of loss L for RFT and GFT has a negative upper
bound expressed by the discrepancy of iterative teaching
defined in Definition 10, and we derive that the ITD of
GFT is O(ψ( 2L(f0)

η̃ϵ )) (detailed notations are introduced
in the subsequent sections), which is shown to be lower
than the ITD of RFT, O(2L(f0)/ (η̃ϵ)).

2. Related Work
Machine teaching. There has been a recent growth of in-
terest in the research of machine teaching (Zhu, 2015; Zhu
et al., 2018; Liu et al., 2017; 2018; Wang et al., 2021). Batch
machine teaching studies behaviors of version space learn-
ers (Chen et al., 2018; Tabibian et al., 2019), linear learners
(Liu et al., 2016), reinforcement learners (Kamalaruban
et al., 2019; Zhang et al., 2020b) along with forgetful learn-
ers (Hunziker et al., 2018; Liu et al., 2018) and multiple
learners (Zhu et al., 2017). Further, taking the learner’s
optimization algorithm into consideration, iterative teaching
has been recently studied (Liu et al., 2017; 2018; Peltola
et al., 2019; Lessard et al., 2019; Liu et al., 2021; Xu et al.,
2021; Qiu et al., 2022). (Liu et al., 2021) considers a label
synthesis teacher and (Qiu et al., 2022) proposes a genera-
tive teacher. (Xu et al., 2021) improves the scalability and
efficiency of the iterative teaching algorithm with locality-
sensitive sampling. Different from existing works that focus
on parametric learners, we aim to teach a nonparametric
learner. In this regime, One of the most related work is
(Mansouri et al., 2019) which analyzes sequential teaching
from the perspective of hypothesis pruning without spec-
ifying a parameter for hypothesis. In contrast, this work
systematically investigates nonparametric teaching from the
optimization perspective. Besides, (Kumar et al., 2021;
Qian et al., 2022) are also highly related, since they study
non-gradient-based kernel learners under the batch setting.
However, they are not strictly nonparametric teaching since
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Figure: Comparison between parameterized and
nonparametric IMT.

Previous iterative machine teach-
ing algorithms are solely based
on parameterized families of tar-
get models. They mainly focus
on convergence in the parameter
space, resulting in difficulty when
the target models are defined to
be functions without dependency
on parameters. To address such
a limitation, we study a more gen-
eral task – Nonparametric Iterative Machine Teaching, which aims to
teach nonparametric target models to learners in an iterative fashion.

Main Contribution:
▶ We comprehensively study Nonparametric Iterative Machine

Teaching, which focuses on exploring iterative algorithms for teaching
parameter-free target models from the optimization perspective.

▶ We propose two teaching algorithms, which are named Random
Functional Teaching (RFT) and Greedy Functional Teaching (GFT),
respectively. RFT is based on random sampling with ground truth labels,
and the derivation of GFT is based on the maximization of an
informative scalar.

▶ We theoretically analyze the asymptotic behavior of both RFT and GFT.
We prove that per-iteration reduction of loss L for RFT and GFT has a
negative upper bound expressed by the discrepancy of iterative
teaching, and we derive that the iterative teaching dimension (ITD) of
GFT is O(ψ(2L(f 0)η̃ϵ )), which is shown to be lower than the ITD of RFT,
O(2L(f 0)/ (η̃ϵ)).

Teaching Settings

Functional Optimization: We define nonparametric iterative machine teaching as a functional mini-
mization over the collection of potential teaching sequences D in the reproducing kernel Hilbert space:

D∗ = argmin
D∈D

M(f̂ , f ∗) + λ · len(D) s.t. f̂ = A(D), (1)

whereM denotes a discrepancy measure, len(D), which is regularized by a constant λ, is the length
of the teaching sequence D, and A represents the learning algorithm of learners.
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Gt∗ ≤ Gt ≤ 0. In a nutshell, the gradient norm at the
optimal example should be maximal at every iteration.

Combining Proposition 5 and results in Theorem 6, maxi-
mizing gradient norm written in Eq. 6 derives our greedy
functional teaching algorithm, namely Greedy-1 Functional
Teaching (GFT-1):

Given a nonparametric target model f∗, GFT-1 is to pick
the example satisfying
(
xt∗ = argmax

xt∈X

∥∥∥∥ ∂L
∂f

∣∣∣
ft(xt),yt=f∗(xt)

K (xt, ·)
∥∥∥∥
H
, yt

∗
= f∗

(
xt∗)

)
(9)

as the optimal one to learners at t-th iteration, and t =
0, 1, . . . , ITDGFT where ITDGFT is the ITD of GFT.

Practically, we can simplify it as
(
xt∗ = argmax

xt∈X

∣∣∣∣ ∂L∂f
∣∣∣
ft(xt),yt=f∗(xt)

∣∣∣∣ , yt
∗
= f∗

(
xt∗)

)
(10)

to save computational cost when choosing normalized ker-
nel functions ∥Kx∥H ≈ 1 or ignoring the trivial influence
from ∥Kx∥H when the values of ∥Kx∥H are the same for
all x ∈ X . Since ∂L/∂f has positive correlation with
∥f − f∗∥H: ∂L/∂f decrease as f gradually approaches
f∗ (Boyd et al., 2004; Coleman, 2012), it is computa-
tionally plausible to maximize |f(x)− f∗(x)| rather than
∂L/∂f |ft(xt),yt directly, such that GFT-1 also can be im-
plemented under the gray-box setting where L and η could
be unknown. Maximizing |f(x) − f∗(x)| is easy to com-
pute, since it avoids calculation of the partial derivative
when example selection. Compared to RFT, GFT selects
examples with a greedy strategy for fast convergence.

Allowing more examples to be fed, i.e., feeding a pack of
teaching examples instead of a single one at each iteration,
we present the Greedy-k Functional Teaching (GFT-k) as a
heuristic. Given a nonparametric target model f∗, GFT-k is
to pick k examples satisfying
(
xt
j
∗
= argmax

xt
i∈X−{xt

i
∗}j−1

i=1

∥∥∥∥ ∂L
∂f

∣∣∣
ft(xt

i),y
t
i

K (xt
i, ·)
∥∥∥∥
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, ytj

∗
= f∗

(
xt
j
∗)
)

(11)

as the pack of optimal examples to learners at t-th iteration,
t = 0, 1, . . . , ITDGFT and j = 1, . . . , k.

The hyper parameter k can take the form of either an inte-
ger counting the number of examples, where k ∈ N, or a
decimal representing the ratio of the pack to the whole pool,
where k ∈ [0, 1]. The pseudo code for RFT, GFT-1, and
GFT-k is given in Algorithm 1 which encapsulates these
algorithms.
Remark 7. For the pool-based teacher who can only pro-
vide teaching examples from a pool P ⊊ X , RFT and GFT
could still work by replacing X by P . However, f t might
converge to the suboptimal f∗′ when the optimal examples
xt∗ ∈ X − P and therefore the pool-based teacher cannot
provide them to learners.

Algorithm 1 Random / Greedy Functional Teaching
Input: Target f∗, initial f0, per-iteration pack size k, small
constant ϵ > 0 and maximal iteration number T .

Set f t ← f0, t = 0.

while t ≤ T and ∥f t − f∗∥H ≥ ϵ do
The teacher selects k teaching examples:
Initialize the pack of teaching examples K = ∅;
for j = 1 to k do

(RFT) 1. Pick xt
j
∗ ∈ X randomly;

(GFT) 1. Pick xt
j
∗ with the maximal difference

between f t and f∗:

xt
j
∗
= argmax

xt
i∈X−{xt

i
∗}j−1

i=1

∣∣f t(xt
i)− f∗(xt

i)
∣∣ ;

2. Add
(
xt
j
∗
, ytj

∗
= f∗

(
xt
j
∗)) into K.

end
Provide K to learners.

The learner updates f t based on received K:
f t ← f t − ηtG(L; f t;K).
Set t← t+ 1.

end

4.3. Analysis of Iterative Teaching Dimension

We begin with iterative teaching dimension analysis of RFT
under the assumptions (Shen et al., 2020) on L and the
kernel function K(x,x′) ∈ H as below.

Assumption 8. The loss function L(f) is LL-Lipschitz
smooth, i.e., ∀f, f ′ ∈ H and x ∈ X

|Ex [∇fL(f)]− Ex [∇fL(f ′)]| ≤ LL |Ex [f ]− Ex [f ′]| ,

where LL ≥ 0 is a constant.

Assumption 9. The kernel function K(x,x′) ∈ H is
bounded, i.e., ∀x,x′ ∈ X , K(x,x′) ≤ MK , where
MK ≥ 0 is a constant.

Recall the definition of the evaluation functional and Fréchet
derivative in Definition 1 and 2, respectively, we further
introduce a discrepancy (Shen et al., 2020) to quantify the
inconsistency between f t and f∗ before theoretical analysis.

Definition 10. The discrepancy of iterative teaching be-
tween f t and f∗ at xt is defined as

SL(f t;xt) :=
∣∣Ext∇fL(f t, f∗)

∣∣2 . (12)

For succinctness, we rewrite Eq. 12 as SL(f t;xt) =

|Ext∇fL(f t)|2 by omitting given f∗. One can observe
that SL(f t;xt) decreases as f t approaches f∗, thus it can
track the convergence state of functional teaching algorithms
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Assumption 1. The loss function L(f ) is LL-Lipschitz smooth, i.e., ∀f, f ′ ∈ H and x ∈ X
|Ex [∇fL(f )]− Ex [∇fL(f ′)]| ≤ LL |Ex [f ]− Ex [f

′]| ,
where LL ≥ 0 is a constant.

Assumption 2. The kernel function K(x,x′) ∈ H is bounded, i.e., ∀x,x′ ∈ X , K(x,x′) ≤MK, where
MK ≥ 0 is a constant.

Lemma 3 (Sufficient Descent for RFT). Under Assumption 1 and 2, if ηt ≤ 1/(2LL ·MK), RFT teachers
can reduce the loss L by L(f t+1)− L(f t) ≤ −ηt/2 · SL(f t;xt).
Theorem 4 (Convergence for RFT). Suppose the model of learners is initialized with f 0 ∈ H and
returns f t ∈ H after t iterations, we have the upper bound of minimal SL(f t;xt) as mint SL(f t;xt) ≤
2L(f 0)/ (η̃t), where 0 < η̃ = min

t
ηt ≤ 1

2LL·MK
.

Lemma 5 (Sufficient Descent for GFT). Under Assumption 1 and 2, if ηt ≤ 1/(2LL ·MK), GFT teachers
can reduce the loss L at a faster speed, L(f t+1)− L(f t) ≤ −ηt/2 · SL(f t;xt∗) ≤ −ηt/2 · SL(f t;xt).
Theorem 6 (Convergence for GFT). Suppose the model of learners is initialized with f 0 ∈ H and
returns f t ∈ H after t iterations, we have the upper bound of minimal SL(f t;xj

∗
) as minj SL(f j;xj

∗
) ≤

2
η̃ψ(t)L(f 0), where 0 < η̃ = min

t
ηt ≤ 1

2LL·MK
, ψ(t) =

∑t−1
j=0 γ

j and γj = SL(f j;xj)
SL(f j;xj∗)

∈ (0, 1] named greedy ratio.

Experiments and Results

▶ Synthetic data.

1D Gaussian Mixture.
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▶ Real-world data.

Digit Correction. Cheetah Impartation.
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Figure 3. Nonparametric teaching for correcting 8 towards 0. (a):
evolution of f t with AFT-1 algorithm. (b): f t for AFT-1 under the
pool-based teacher. (c): f t for AFT-1 when occasionally teaching
with O. AFT-1 presents satisfied nonparametric teaching capability
in these different scenarios.

Fig.4 (a) presents the convergence performance for PFT and
AFT under different settings. The yellow region is marked
for AFT-k, k ∈ (0, 1). We see that the loss of AFT decline
more dramatically than PFT, and it converges to sub-optimal
f under the pool-based teacher or alternative teaching. We
leave comparison between PFT and AFT of concrete images
like Fig.3 in Appendix C Fig.6.

The cheetah impartation. Different from correction tasks
where the learner has a preliminary idea of f∗, the impar-
tation problem focus on the learner with no idea about f∗.
Concretely, when the teacher asks what is a cheetah (Shen
et al., 2020), it would be a blank in the learner’s mind. As a
response, teacher would educate the learner about the chee-
tah in pixels viewpoint as breaking the whole concept down
into smaller points brings better understanding. Fig.5 com-
pares PFT and AFT under different settings by visualizing
f t therein. We find that AFT is vastly better than PFT that
has roughly the same performance as teaching with whole
set (Bottou, 2010). Besides, AFT-1 tends to outperform
other AFT algorithms, but fails to teach entirely f∗ under
the pool-based setting.

We conclude from Fig.4 (b) that compared with AFT, PFT
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Figure 4. Comparison of convergence performance for PFT and
AFT. The legend of AFT-1 for pool-based teaching is Pool AFT-
1 when that for alternative teaching is Alte. AFT-1. The label
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Figure 5. Nonparametric teaching for imparting the cheetah. f
of AFT become clear significantly faster than PFT. Part of f are
not updated for pool-based teaching, so several dark discontinuity
points can be found.

saves the cost of searching the optimal examples at the
expense of slow convergence, and pool-based teaching also
suffer from sub-optimization.

6. Conclusion
In this paper, we study a general problem, Nonparamet-
ric Iterative Machine Teaching (NIMT), which generalizes
model space from finite dimensional parameter one to in-
finite dimensional function one. We are mainly concerned
with the reproduce kernel Hilbert space in this paper. To
tackle it, we present a natural nonstrategic algorithm named
Passive Functional Teaching (PFT) and propose a strategic
one named Aggressive FT (AFT). We theoretically prove
that ITD of PFT is O(1/ϵ) when AFT has a lower ITD
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