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Teaching Settings

Machine Teaching

Machine teaching (MT) is the study of how to design the optimal teaching
set, typically with minimal examples, so that learners can quickly learn
farget models based on these examples.

It can be considered an inverse problem of machine learning, where ma-
chine learning aims to learn model parameters from a dataset, while MT
aims to find a minimal dataset from the target model parameters.

Considering the interaction manner between teachers and learners, MT
can be conducted in either
» batch fashion where the teacher is allowed to interact with the learner

once, or
» iterative fashion where an iterative teacher would feed examples
sequentially based on current status of the iterative learner.

Previous iterative machine teach-
iIng algorithms are solely based
on parameterized families of tar-
get models. They mainly focus
on convergence in the parameter
space, resulting in difficulty when

the target mOde S are deﬂned tO (a) Parametric IMT (b) Nonparametric IMT
be functions without dependency Figure: Comparison between parameterized and
on parameters. To address such nonparametric IMT.

a limitation, we study a more gen-
eral task — Nonparametric lterative Machine Teaching, which aims to
teach nonparametric target models to learners in an iterative fashion.

Main Contribution:

» We comprehensively study Nonparametric lterative Machine
Teaching, which focuses on exploring iterative algorithms for teaching
parameter-free target models from the optimization perspective.

» We propose two teaching algorithms, which are named Random
Functional Teaching (RFT) and Greedy Functional Teaching (GFT),
respectively. RFT is based on random sampling with ground truth labels,
and the derivation of GFT is based on the maximization of an
informative scalar.

» We theoretically analyze the asymptotic behavior of both RFT and GFT.
We prove that per-iteration reduction of loss £ for RFT and GFT has a
negative upper bound expressed by the discrepancy of iterative
teaching, and we derive that the iterative teaching dimension (ITD) of

GFT is Oy 7§f LUy, which is shown to be lower than the ITD of RFT,
O(L(f%)/ (7€)

Functional Optimization: We define nonparametric iterative machine teaching as a functional mini-
mization over the collection of potential teaching sequences D in the reproducing kernel Hilbert space:
D* =argmin M(f, f )+ X-len(D) st f=AD), (1)
Deb
where M denotes a discrepancy measure, len(D), which is regularized by a constant ), is the length
of the teaching sequence D, and A represents the learning algorithm of learners.

Functional Teaching Algorithms

Algorithm 1 Random / Greedy Functional Teaching

Input: Target f*, initial ', per-iteration pack size k, small

constant € > 0 and maximal iteration number 7" e’l?;* = argmax ‘f () — ()| 5
zieX —{=]"} 7,
Set ft «+ f9,¢t =0.
while t < T and || f* — f*||x > e do 2. Add (2", yt" = f* (21”)) into K.
The teacher selects k teaching examples: end
Initialize the pack of teaching examples K = (; Provide K to learners.
for j = 1to k do ) The learner updates f! based on received K:
(RFT) 1. Pick %~ € A randomly; Ft— ft—ntG(L: f1:K).
(GFT) 1. Pick :1: L™ with the maximal difference Sett + t+ 1.
between f* and f*: ‘) end

Analysis of lterative Teaching Dimension

Assumption 1. The loss function L(f) is L.-Lipschitz smooth, i.e.,Vf, fe Handx € X
By [ViL(f)] = Ex [VLO] < Le| B [f] — Ex [f]]
where L, > 0 Is a constant.

Assumption 2. The kernel function K (x,x') € H is bounded, i.e.,, Ve, x' € X, K(x,x’') < My, where
My > 01s a constant.

Lemma 3 (Sufficient Descent for RFT). Under Assumption 1 and 2, if n* < 1/(2L.- My), RFT teachers
can reduce the loss £ by L(f'") — L(fY) < —n'/2-S,(f!; xh).

Theorem 4 (Convergence for RFT). Suppose the model of learners is initialized with ' € H and
returns f* € H after ¢ iterations, we have the upper bound of minimal S;(/" «") as min; Sp(f%; x!) <
2L(f%)/ (nt), where 0 < 1 = mmn < 2L£ o

Lemma 5 (Sufficient Descent for GFT). Under Assumption 1 and 2, if ' < 1/(2L.-My), GFT teachers
can reduce the loss £ at a faster speed, L(f™) — L(fY) < —n'/2-Se(fLx") < —nt/2 - Sp(fL: x).

Theorem 6 (Convergence for GFT). Suppose the model of learners is initialized with ' € H and

returns ft € H after t iterations, we have the upper bound of minimal S;(f" x/") as min; S;(f7; ') <

Se(f7:a? .
(fo) where 0 < n = mm?? < QL;MK P(t) = Z 79 and 7/ = Sj((]{; ]>> (0, 1) named greedy ratio.
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Experiments and Results

» Synthetic data.

1D Gaussian Mixture.
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2D Classification.
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» Real-world data.

Sketch for I\/||ssmq Person Report.

Digit Correction.
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